Biological physics: Filaments band together View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Jean-François Joanny, Sriram Ramaswamy

ABSTRACT

Theoretical models of the dynamics of self-driven systems predict the collective motion of biological systems, such as insect swarms. An experimental model has been developed to test the predictions.

PAGES

33

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

7311

VOLUME

467

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/467033a

DOI

http://dx.doi.org/10.1038/467033a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051324120

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20811442


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Joanny", 
        "givenName": "Jean-Fran\u00e7ois", 
        "id": "sg:person.01314040302.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Ramaswamy", 
        "givenName": "Sriram", 
        "id": "sg:person.01056061034.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056061034.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1140414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001821281", 
          "https://doi.org/10.1038/nature09312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001821281", 
          "https://doi.org/10.1038/nature09312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008235202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008235202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-070909-104101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014391404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2976/1.3054712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023052697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.061908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028240212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.061908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028240212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.046113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044053371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.046113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044053371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0509-72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049879085", 
          "https://doi.org/10.1038/scientificamerican0509-72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.058001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.058001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828900"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Theoretical models of the dynamics of self-driven systems predict the collective motion of biological systems, such as insect swarms. An experimental model has been developed to test the predictions.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/467033a", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7311", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "467"
      }
    ], 
    "name": "Biological physics: Filaments band together", 
    "pagination": "33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f47c2d5de986160dd7b184e839e1dfcc85bfffdbc852881d84127830f6fdbb81"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20811442"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/467033a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051324120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/467033a", 
      "https://app.dimensions.ai/details/publication/pub.1051324120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77561_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/467033a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/467033a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/467033a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/467033a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/467033a'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      20 PREDICATES      39 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/467033a schema:author N6903aa182a084b2d8608faa19866c907
2 schema:citation sg:pub.10.1038/nature09312
3 sg:pub.10.1038/scientificamerican0509-72
4 https://doi.org/10.1103/physreve.74.061908
5 https://doi.org/10.1103/physreve.77.046113
6 https://doi.org/10.1103/physreve.81.061916
7 https://doi.org/10.1103/physrevlett.100.058001
8 https://doi.org/10.1103/physrevlett.75.1226
9 https://doi.org/10.1103/physrevlett.75.4326
10 https://doi.org/10.1103/physrevlett.93.098103
11 https://doi.org/10.1126/science.1140414
12 https://doi.org/10.1146/annurev-conmatphys-070909-104101
13 https://doi.org/10.2976/1.3054712
14 schema:datePublished 2010-09
15 schema:datePublishedReg 2010-09-01
16 schema:description Theoretical models of the dynamics of self-driven systems predict the collective motion of biological systems, such as insect swarms. An experimental model has been developed to test the predictions.
17 schema:genre non_research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N234d000c32e2487ebb898b81c4e5f966
21 N2c5fed8f95f849d0b8cd7306960c3c34
22 sg:journal.1018957
23 schema:name Biological physics: Filaments band together
24 schema:pagination 33
25 schema:productId N0824155b226d4fc79ab073528d138174
26 N808645580f4b47baad1763af0504eaca
27 N94c75179b2a34f38a145e328fbc98827
28 Ncc944a6ed28e40e6b5b82f9e04090985
29 Ndf946e163ef942738f1329c39ca851ba
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051324120
31 https://doi.org/10.1038/467033a
32 schema:sdDatePublished 2019-04-11T10:49
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne6a940c8cd1242ad85ce5a5325b363b8
35 schema:url https://www.nature.com/articles/467033a
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0824155b226d4fc79ab073528d138174 schema:name doi
40 schema:value 10.1038/467033a
41 rdf:type schema:PropertyValue
42 N234d000c32e2487ebb898b81c4e5f966 schema:issueNumber 7311
43 rdf:type schema:PublicationIssue
44 N2c5fed8f95f849d0b8cd7306960c3c34 schema:volumeNumber 467
45 rdf:type schema:PublicationVolume
46 N6903aa182a084b2d8608faa19866c907 rdf:first sg:person.01314040302.05
47 rdf:rest Na3ee36dfe32843549cef8c2691a40dfc
48 N808645580f4b47baad1763af0504eaca schema:name readcube_id
49 schema:value f47c2d5de986160dd7b184e839e1dfcc85bfffdbc852881d84127830f6fdbb81
50 rdf:type schema:PropertyValue
51 N94c75179b2a34f38a145e328fbc98827 schema:name nlm_unique_id
52 schema:value 0410462
53 rdf:type schema:PropertyValue
54 Na3ee36dfe32843549cef8c2691a40dfc rdf:first sg:person.01056061034.58
55 rdf:rest rdf:nil
56 Ncc944a6ed28e40e6b5b82f9e04090985 schema:name dimensions_id
57 schema:value pub.1051324120
58 rdf:type schema:PropertyValue
59 Ndf946e163ef942738f1329c39ca851ba schema:name pubmed_id
60 schema:value 20811442
61 rdf:type schema:PropertyValue
62 Ne6a940c8cd1242ad85ce5a5325b363b8 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 sg:journal.1018957 schema:issn 0090-0028
65 1476-4687
66 schema:name Nature
67 rdf:type schema:Periodical
68 sg:person.01056061034.58 schema:familyName Ramaswamy
69 schema:givenName Sriram
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056061034.58
71 rdf:type schema:Person
72 sg:person.01314040302.05 schema:familyName Joanny
73 schema:givenName Jean-François
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05
75 rdf:type schema:Person
76 sg:pub.10.1038/nature09312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001821281
77 https://doi.org/10.1038/nature09312
78 rdf:type schema:CreativeWork
79 sg:pub.10.1038/scientificamerican0509-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049879085
80 https://doi.org/10.1038/scientificamerican0509-72
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreve.74.061908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028240212
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreve.77.046113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044053371
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physreve.81.061916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008235202
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevlett.100.058001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752878
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.75.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003549718
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevlett.75.4326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812278
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.93.098103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828900
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1126/science.1140414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001182614
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1146/annurev-conmatphys-070909-104101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014391404
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2976/1.3054712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023052697
101 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...