Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

Kazuhito Tsukagoshi, Bruce W. Alphenaar, Hiroki Ago

ABSTRACT

Conventional electronic devices generally utilize only the charge of conduction electrons; however, interest is growing in ‘spin-electronic’ devices1, whose operation depends additionally on the electronic spin. Spin-polarized electrons (which occur naturally in ferromagnetic materials) can be injected from a ferromagnet into non-ferromagnetic materials2,3,4, or through oxide tunnel barriers3,5,6,7,8,9,10. The electron-scattering rate at any subsequent ferromagnetic/non-ferromagnetic interface depends on the spin polarity, a property that is exploited in spin-electronic devices. The unusual conducting properties11,12,13,14,15,16,17,18 of carbon nanotubes offer intriguing possibilities for such devices; their elastic- and phase-scattering lengths are extremely long16,17, and carbon nanotubes can behave as one-dimensional conductors18. Here we report the injection of spin-polarized electrons from ferromagnetic contacts into multi-walled carbon nanotubes, finding direct evidence for coherent transport of electron spins. We observe a hysteretic magnetoresistance in several nanotubes with a maximum resistance change of 9%, from which we estimate the spin-flip scattering length to be at least 130 nm—an encouraging result for the development of practical nanotube spin-electronic devices. More... »

PAGES

572

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/44108

DOI

http://dx.doi.org/10.1038/44108

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043253758


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "*The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukagoshi", 
        "givenName": "Kazuhito", 
        "id": "sg:person.01003751436.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003751436.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "\u2020Hitachi Cambridge Laboratory, Madingley Road, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alphenaar", 
        "givenName": "Bruce W.", 
        "id": "sg:person.01254350554.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254350554.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "\u2021Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ago", 
        "givenName": "Hiroki", 
        "id": "sg:person.01365605103.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365605103.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(75)90174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002344734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(75)90174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002344734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020262369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020262369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ms.25.080195.001021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020405818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/358220a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024485352", 
          "https://doi.org/10.1038/358220a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027340399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027340399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(95)90001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028787669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382054a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030685390", 
          "https://doi.org/10.1038/382054a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.11914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036098301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.11914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036098301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038241191", 
          "https://doi.org/10.1038/17755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038241191", 
          "https://doi.org/10.1038/17755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048906273", 
          "https://doi.org/10.1038/29494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048906273", 
          "https://doi.org/10.1038/29494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r2917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r2917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5261.523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5370.1744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5394.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098867011"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "Conventional electronic devices generally utilize only the charge of conduction electrons; however, interest is growing in \u2018spin-electronic\u2019 devices1, whose operation depends additionally on the electronic spin. Spin-polarized electrons (which occur naturally in ferromagnetic materials) can be injected from a ferromagnet into non-ferromagnetic materials2,3,4, or through oxide tunnel barriers3,5,6,7,8,9,10. The electron-scattering rate at any subsequent ferromagnetic/non-ferromagnetic interface depends on the spin polarity, a property that is exploited in spin-electronic devices. The unusual conducting properties11,12,13,14,15,16,17,18 of carbon nanotubes offer intriguing possibilities for such devices; their elastic- and phase-scattering lengths are extremely long16,17, and carbon nanotubes can behave as one-dimensional conductors18. Here we report the injection of spin-polarized electrons from ferromagnetic contacts into multi-walled carbon nanotubes, finding direct evidence for coherent transport of electron spins. We observe a hysteretic magnetoresistance in several nanotubes with a maximum resistance change of 9%, from which we estimate the spin-flip scattering length to be at least 130 nm\u2014an encouraging result for the development of practical nanotube spin-electronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/44108", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6753", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "401"
      }
    ], 
    "name": "Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube", 
    "pagination": "572", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce08548e9ae1e07666d609c4e84de0c8affde7757ca67f9f7b273e1c493da3f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/44108"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043253758"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/44108", 
      "https://app.dimensions.ai/details/publication/pub.1043253758"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53977_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/44108"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/44108'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/44108'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/44108'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/44108'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/44108 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc87171097e0f4268a33d7ba11040b6ac
4 schema:citation sg:pub.10.1038/17755
5 sg:pub.10.1038/29494
6 sg:pub.10.1038/358220a0
7 sg:pub.10.1038/382054a0
8 https://doi.org/10.1016/0304-8853(95)90001-2
9 https://doi.org/10.1016/0370-1573(94)90105-8
10 https://doi.org/10.1016/0375-9601(75)90174-7
11 https://doi.org/10.1103/physrevb.58.r2917
12 https://doi.org/10.1103/physrevb.59.11914
13 https://doi.org/10.1103/physrevlett.26.192
14 https://doi.org/10.1103/physrevlett.55.1790
15 https://doi.org/10.1103/physrevlett.74.3273
16 https://doi.org/10.1103/physrevlett.76.479
17 https://doi.org/10.1103/physrevlett.80.2941
18 https://doi.org/10.1103/physrevlett.80.4313
19 https://doi.org/10.1103/physrevlett.81.681
20 https://doi.org/10.1126/science.272.5261.523
21 https://doi.org/10.1126/science.280.5370.1744
22 https://doi.org/10.1126/science.282.5394.1660
23 https://doi.org/10.1142/p080
24 https://doi.org/10.1146/annurev.ms.25.080195.001021
25 schema:datePublished 1999-10
26 schema:datePublishedReg 1999-10-01
27 schema:description Conventional electronic devices generally utilize only the charge of conduction electrons; however, interest is growing in ‘spin-electronic’ devices1, whose operation depends additionally on the electronic spin. Spin-polarized electrons (which occur naturally in ferromagnetic materials) can be injected from a ferromagnet into non-ferromagnetic materials2,3,4, or through oxide tunnel barriers3,5,6,7,8,9,10. The electron-scattering rate at any subsequent ferromagnetic/non-ferromagnetic interface depends on the spin polarity, a property that is exploited in spin-electronic devices. The unusual conducting properties11,12,13,14,15,16,17,18 of carbon nanotubes offer intriguing possibilities for such devices; their elastic- and phase-scattering lengths are extremely long16,17, and carbon nanotubes can behave as one-dimensional conductors18. Here we report the injection of spin-polarized electrons from ferromagnetic contacts into multi-walled carbon nanotubes, finding direct evidence for coherent transport of electron spins. We observe a hysteretic magnetoresistance in several nanotubes with a maximum resistance change of 9%, from which we estimate the spin-flip scattering length to be at least 130 nm—an encouraging result for the development of practical nanotube spin-electronic devices.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nb1b3fba1683a4334a414fb16c6151fb7
32 Nf14af0c72d064525b6eca90df5a5489a
33 sg:journal.1018957
34 schema:name Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube
35 schema:pagination 572
36 schema:productId N04d622cb55284cd5881578bfd12c000d
37 N06ce7506053744dbaaff355a77be1a28
38 Nf24c580110c549768bf08cacb0452495
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043253758
40 https://doi.org/10.1038/44108
41 schema:sdDatePublished 2019-04-11T12:10
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N9f6ac05e0a59464da52df3c8c5485e14
44 schema:url https://www.nature.com/articles/44108
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N04d622cb55284cd5881578bfd12c000d schema:name readcube_id
49 schema:value ce08548e9ae1e07666d609c4e84de0c8affde7757ca67f9f7b273e1c493da3f3
50 rdf:type schema:PropertyValue
51 N06ce7506053744dbaaff355a77be1a28 schema:name doi
52 schema:value 10.1038/44108
53 rdf:type schema:PropertyValue
54 N9f6ac05e0a59464da52df3c8c5485e14 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Na2954d2e4ab2441c9a71d60dbbec8e94 rdf:first sg:person.01254350554.19
57 rdf:rest Nf74f23d73ed64965b92f7cb5ca8ddd7b
58 Nb1b3fba1683a4334a414fb16c6151fb7 schema:volumeNumber 401
59 rdf:type schema:PublicationVolume
60 Nc87171097e0f4268a33d7ba11040b6ac rdf:first sg:person.01003751436.23
61 rdf:rest Na2954d2e4ab2441c9a71d60dbbec8e94
62 Nf14af0c72d064525b6eca90df5a5489a schema:issueNumber 6753
63 rdf:type schema:PublicationIssue
64 Nf24c580110c549768bf08cacb0452495 schema:name dimensions_id
65 schema:value pub.1043253758
66 rdf:type schema:PropertyValue
67 Nf74f23d73ed64965b92f7cb5ca8ddd7b rdf:first sg:person.01365605103.04
68 rdf:rest rdf:nil
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
73 schema:name Materials Engineering
74 rdf:type schema:DefinedTerm
75 sg:journal.1018957 schema:issn 0090-0028
76 1476-4687
77 schema:name Nature
78 rdf:type schema:Periodical
79 sg:person.01003751436.23 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
80 schema:familyName Tsukagoshi
81 schema:givenName Kazuhito
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003751436.23
83 rdf:type schema:Person
84 sg:person.01254350554.19 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
85 schema:familyName Alphenaar
86 schema:givenName Bruce W.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254350554.19
88 rdf:type schema:Person
89 sg:person.01365605103.04 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
90 schema:familyName Ago
91 schema:givenName Hiroki
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365605103.04
93 rdf:type schema:Person
94 sg:pub.10.1038/17755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038241191
95 https://doi.org/10.1038/17755
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/29494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048906273
98 https://doi.org/10.1038/29494
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/358220a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024485352
101 https://doi.org/10.1038/358220a0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/382054a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685390
104 https://doi.org/10.1038/382054a0
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0304-8853(95)90001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028787669
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0370-1573(94)90105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020262369
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0375-9601(75)90174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002344734
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.58.r2917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590591
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.59.11914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036098301
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.26.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774493
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.55.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792184
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.74.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810846
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.76.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027340399
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.80.2941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817188
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.80.4313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817462
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.81.681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052387015
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.272.5261.523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552848
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.280.5370.1744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561411
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.282.5394.1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563354
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1142/p080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098867011
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1146/annurev.ms.25.080195.001021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020405818
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
141 schema:name †Hitachi Cambridge Laboratory, Madingley Road, Cambridge CB3 0HE, UK
142 ‡Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
145 schema:name *The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...