Crystallization of hard-sphere colloids in microgravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-06

AUTHORS

Jixiang Zhu, Min Li, R. Rogers, W. Meyer, R. H. Ottewill, W. B. Russel, P. M. Chaikin

ABSTRACT

The structure of, and transitions between, liquids, crystals and glasses have commonly been studied with the hard-sphere model1,2,3,4,5, in which the atoms are modelled as spheres that interact only through an infinite repulsion on contact. Suspensions of uniform colloidal polymer particles are good approximations to hard spheres6,7,8,9,10,11, and so provide an experimental model system for investigating hard-sphere phases. They display a crystallization transition driven by entropy alone. Because the particles are much larger than atoms, and the crystals are weakly bound, gravity plays a significant role in the formation and structure of these colloidal crystals. Here we report the results of microgravity experiments performed on the Space Shuttle Columbia to elucidate the effects of gravity on colloidal crystallization. Whereas in normal gravity colloidal crystals grown just above the volume fraction at melting show a mixture of random stacking of hexagonally close-packed planes (r.h.c.p.) and face-centred cubic (f.c.c.) packing if allowed time to settle7,8, those in microgravity exhibit the r.h.c.p. structure alone, suggesting that the f.c.c. component may be induced by gravity-induced stresses. We also see dendritic growth instabilities that are not evident in normal gravity, presumably because they are disrupted by shear-induced stresses as the crystals settle under gravity. Finally, glassy samples at high volume fraction which fail to crystallize after more than a year on Earth crystallize fully in less than two weeks in microgravity. Clearly gravity masks or alters some of the intrinsic aspects of colloidal crystallization. More... »

PAGES

883-885

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/43141

DOI

http://dx.doi.org/10.1038/43141

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006990270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "*Department of Physics, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "*Department of Physics, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jixiang", 
        "id": "sg:person.01141760177.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141760177.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u2020Department of Chemical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "\u2020Department of Chemical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Min", 
        "id": "sg:person.01324132367.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324132367.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u2021NASA Lewis Research Center, 44136-3191, Cleveland, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.419077.c", 
          "name": [
            "\u2021NASA Lewis Research Center, 44136-3191, Cleveland, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "R.", 
        "id": "sg:person.01025342167.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025342167.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u2021NASA Lewis Research Center, 44136-3191, Cleveland, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.419077.c", 
          "name": [
            "\u2021NASA Lewis Research Center, 44136-3191, Cleveland, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "W.", 
        "id": "sg:person.01334140027.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334140027.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00a7School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "\u00a7School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottewill", 
        "givenName": "R. H.", 
        "id": "sg:person.013553470761.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013553470761.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u2020Department of Chemical Engineering, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "\u2020Department of Chemical Engineering, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russel", 
        "givenName": "W. B.", 
        "id": "sg:person.01233322120.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233322120.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "*Department of Physics, Princeton University, 08544, Princeton, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "*Department of Physics, Princeton University, 08544, Princeton, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikin", 
        "givenName": "P. M.", 
        "id": "sg:person.016355051605.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0116223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046873236", 
          "https://doi.org/10.1007/bfb0116223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320340a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000082568", 
          "https://doi.org/10.1038/320340a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351553a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052622181", 
          "https://doi.org/10.1038/351553a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385141a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037027987", 
          "https://doi.org/10.1038/385141a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-06", 
    "datePublishedReg": "1997-06-01", 
    "description": "The structure of, and transitions between, liquids, crystals and glasses have commonly been studied with the hard-sphere model1,2,3,4,5, in which the atoms are modelled as spheres that interact only through an infinite repulsion on contact. Suspensions of uniform colloidal polymer particles are good approximations to hard spheres6,7,8,9,10,11, and so provide an experimental model system for investigating hard-sphere phases. They display a crystallization transition driven by entropy alone. Because the particles are much larger than atoms, and the crystals are weakly bound, gravity plays a significant role in the formation and structure of these colloidal crystals. Here we report the results of microgravity experiments performed on the Space Shuttle Columbia to elucidate the effects of gravity on colloidal crystallization. Whereas in normal gravity colloidal crystals grown just above the volume fraction at melting show a mixture of random stacking of hexagonally close-packed planes (r.h.c.p.) and face-centred cubic (f.c.c.) packing if allowed time to settle7,8, those in microgravity exhibit the r.h.c.p. structure alone, suggesting that the f.c.c. component may be induced by gravity-induced stresses. We also see dendritic growth instabilities that are not evident in normal gravity, presumably because they are disrupted by shear-induced stresses as the crystals settle under gravity. Finally, glassy samples at high volume fraction which fail to crystallize after more than a year on Earth crystallize fully in less than two weeks in microgravity. Clearly gravity masks or alters some of the intrinsic aspects of colloidal crystallization.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/43141", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6636", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "387"
      }
    ], 
    "keywords": [
      "infinite repulsion", 
      "good approximation", 
      "effect of gravity", 
      "random stacking", 
      "hard-sphere colloids", 
      "gravity", 
      "crystallization transition", 
      "volume fraction", 
      "approximation", 
      "microgravity experiments", 
      "entropy", 
      "atoms", 
      "growth instability", 
      "colloidal crystallization", 
      "gravity-induced stresses", 
      "crystals", 
      "colloidal crystals", 
      "transition", 
      "structure", 
      "Space Shuttle Columbia", 
      "plane", 
      "particles", 
      "instability", 
      "sphere", 
      "repulsion", 
      "system", 
      "shuttle Columbia", 
      "glassy samples", 
      "crystallization", 
      "model system", 
      "normal gravity", 
      "high volume fraction", 
      "glass", 
      "Earth", 
      "experiments", 
      "liquid", 
      "results", 
      "microgravity", 
      "phase", 
      "time", 
      "experimental model system", 
      "components", 
      "fraction", 
      "intrinsic aspects", 
      "aspects", 
      "colloids", 
      "significant role", 
      "stacking", 
      "effect", 
      "contact", 
      "melting", 
      "mixture", 
      "mask", 
      "stress", 
      "samples", 
      "suspension", 
      "colloidal polymer particles", 
      "formation", 
      "polymer particles", 
      "role", 
      "alters", 
      "years", 
      "Columbia", 
      "weeks"
    ], 
    "name": "Crystallization of hard-sphere colloids in microgravity", 
    "pagination": "883-885", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006990270"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/43141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/43141", 
      "https://app.dimensions.ai/details/publication/pub.1006990270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/43141"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/43141'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/43141'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/43141'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/43141'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      22 PREDICATES      94 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/43141 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb2c98eb4ce74439ea1801fdfd4a1081a
4 schema:citation sg:pub.10.1007/bfb0116223
5 sg:pub.10.1038/320340a0
6 sg:pub.10.1038/351553a0
7 sg:pub.10.1038/385141a0
8 schema:datePublished 1997-06
9 schema:datePublishedReg 1997-06-01
10 schema:description The structure of, and transitions between, liquids, crystals and glasses have commonly been studied with the hard-sphere model1,2,3,4,5, in which the atoms are modelled as spheres that interact only through an infinite repulsion on contact. Suspensions of uniform colloidal polymer particles are good approximations to hard spheres6,7,8,9,10,11, and so provide an experimental model system for investigating hard-sphere phases. They display a crystallization transition driven by entropy alone. Because the particles are much larger than atoms, and the crystals are weakly bound, gravity plays a significant role in the formation and structure of these colloidal crystals. Here we report the results of microgravity experiments performed on the Space Shuttle Columbia to elucidate the effects of gravity on colloidal crystallization. Whereas in normal gravity colloidal crystals grown just above the volume fraction at melting show a mixture of random stacking of hexagonally close-packed planes (r.h.c.p.) and face-centred cubic (f.c.c.) packing if allowed time to settle7,8, those in microgravity exhibit the r.h.c.p. structure alone, suggesting that the f.c.c. component may be induced by gravity-induced stresses. We also see dendritic growth instabilities that are not evident in normal gravity, presumably because they are disrupted by shear-induced stresses as the crystals settle under gravity. Finally, glassy samples at high volume fraction which fail to crystallize after more than a year on Earth crystallize fully in less than two weeks in microgravity. Clearly gravity masks or alters some of the intrinsic aspects of colloidal crystallization.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N110dde0c21fb4778b111f8a86a30e962
15 Nd5dab82e96e14cd18e274e61ac1245e4
16 sg:journal.1018957
17 schema:keywords Columbia
18 Earth
19 Space Shuttle Columbia
20 alters
21 approximation
22 aspects
23 atoms
24 colloidal crystallization
25 colloidal crystals
26 colloidal polymer particles
27 colloids
28 components
29 contact
30 crystallization
31 crystallization transition
32 crystals
33 effect
34 effect of gravity
35 entropy
36 experimental model system
37 experiments
38 formation
39 fraction
40 glass
41 glassy samples
42 good approximation
43 gravity
44 gravity-induced stresses
45 growth instability
46 hard-sphere colloids
47 high volume fraction
48 infinite repulsion
49 instability
50 intrinsic aspects
51 liquid
52 mask
53 melting
54 microgravity
55 microgravity experiments
56 mixture
57 model system
58 normal gravity
59 particles
60 phase
61 plane
62 polymer particles
63 random stacking
64 repulsion
65 results
66 role
67 samples
68 shuttle Columbia
69 significant role
70 sphere
71 stacking
72 stress
73 structure
74 suspension
75 system
76 time
77 transition
78 volume fraction
79 weeks
80 years
81 schema:name Crystallization of hard-sphere colloids in microgravity
82 schema:pagination 883-885
83 schema:productId N1b8e9204d526496aa2747d57c19ff5e1
84 N8305691f002d415386a0c850eceeadbe
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006990270
86 https://doi.org/10.1038/43141
87 schema:sdDatePublished 2022-05-10T09:46
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N43848b1244f640988504a9ca80955811
90 schema:url https://doi.org/10.1038/43141
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N110dde0c21fb4778b111f8a86a30e962 schema:volumeNumber 387
95 rdf:type schema:PublicationVolume
96 N1124dc694bab45af90ac3cebe552e3ff rdf:first sg:person.01324132367.47
97 rdf:rest Nce71c122f5064196a99e9f4a1b36b247
98 N13224896e6264c1e94b7c8e3d93232be rdf:first sg:person.01233322120.66
99 rdf:rest N906dde7a5f0b496e8a96ddae78a7f6b3
100 N150d98364dd6417686f80a753024a1b6 rdf:first sg:person.013553470761.69
101 rdf:rest N13224896e6264c1e94b7c8e3d93232be
102 N1b8e9204d526496aa2747d57c19ff5e1 schema:name dimensions_id
103 schema:value pub.1006990270
104 rdf:type schema:PropertyValue
105 N43848b1244f640988504a9ca80955811 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N8305691f002d415386a0c850eceeadbe schema:name doi
108 schema:value 10.1038/43141
109 rdf:type schema:PropertyValue
110 N906dde7a5f0b496e8a96ddae78a7f6b3 rdf:first sg:person.016355051605.83
111 rdf:rest rdf:nil
112 Nb2c98eb4ce74439ea1801fdfd4a1081a rdf:first sg:person.01141760177.11
113 rdf:rest N1124dc694bab45af90ac3cebe552e3ff
114 Nbdc4e14ccc284fc19695ba31d3f39957 rdf:first sg:person.01334140027.07
115 rdf:rest N150d98364dd6417686f80a753024a1b6
116 Nce71c122f5064196a99e9f4a1b36b247 rdf:first sg:person.01025342167.71
117 rdf:rest Nbdc4e14ccc284fc19695ba31d3f39957
118 Nd5dab82e96e14cd18e274e61ac1245e4 schema:issueNumber 6636
119 rdf:type schema:PublicationIssue
120 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
121 schema:name Chemical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Chemistry (incl. Structural)
125 rdf:type schema:DefinedTerm
126 sg:journal.1018957 schema:issn 0028-0836
127 1476-4687
128 schema:name Nature
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.01025342167.71 schema:affiliation grid-institutes:grid.419077.c
132 schema:familyName Rogers
133 schema:givenName R.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025342167.71
135 rdf:type schema:Person
136 sg:person.01141760177.11 schema:affiliation grid-institutes:grid.16750.35
137 schema:familyName Zhu
138 schema:givenName Jixiang
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141760177.11
140 rdf:type schema:Person
141 sg:person.01233322120.66 schema:affiliation grid-institutes:grid.16750.35
142 schema:familyName Russel
143 schema:givenName W. B.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233322120.66
145 rdf:type schema:Person
146 sg:person.01324132367.47 schema:affiliation grid-institutes:grid.16750.35
147 schema:familyName Li
148 schema:givenName Min
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324132367.47
150 rdf:type schema:Person
151 sg:person.01334140027.07 schema:affiliation grid-institutes:grid.419077.c
152 schema:familyName Meyer
153 schema:givenName W.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334140027.07
155 rdf:type schema:Person
156 sg:person.013553470761.69 schema:affiliation grid-institutes:grid.5337.2
157 schema:familyName Ottewill
158 schema:givenName R. H.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013553470761.69
160 rdf:type schema:Person
161 sg:person.016355051605.83 schema:affiliation grid-institutes:grid.16750.35
162 schema:familyName Chaikin
163 schema:givenName P. M.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83
165 rdf:type schema:Person
166 sg:pub.10.1007/bfb0116223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046873236
167 https://doi.org/10.1007/bfb0116223
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/320340a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000082568
170 https://doi.org/10.1038/320340a0
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/351553a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052622181
173 https://doi.org/10.1038/351553a0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/385141a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037027987
176 https://doi.org/10.1038/385141a0
177 rdf:type schema:CreativeWork
178 grid-institutes:grid.16750.35 schema:alternateName *Department of Physics, Princeton University, 08544, Princeton, New Jersey, USA
179 †Department of Chemical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
180 schema:name *Department of Physics, Princeton University, 08544, Princeton, New Jersey, USA
181 †Department of Chemical Engineering, Princeton University, 08544, Princeton, New Jersey, USA
182 rdf:type schema:Organization
183 grid-institutes:grid.419077.c schema:alternateName ‡NASA Lewis Research Center, 44136-3191, Cleveland, Ohio, USA
184 schema:name ‡NASA Lewis Research Center, 44136-3191, Cleveland, Ohio, USA
185 rdf:type schema:Organization
186 grid-institutes:grid.5337.2 schema:alternateName §School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
187 schema:name §School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...