Biodegradable block copolymers as injectable drug-delivery systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

Byeongmoon Jeong, You Han Bae, Doo Sung Lee, Sung Wan Kim

ABSTRACT

Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (known as poloxamers) are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel-sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 degrees C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs. More... »

PAGES

860-862

Journal

TITLE

Nature

ISSUE

6645

VOLUME

388

Author Affiliations

Related Patents

  • Sterilization Of Ciprofloxacin Composition
  • Methods For Repairing And Regenerating Human Dura Mater
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Ophthalmic Composition
  • Thermogelling Oligopeptide Polymers
  • Reversible Geling Co-Polymer And Method Of Making
  • Biodegradable Botulinum Toxin Implant
  • Delivery Of Poly (Ethylene Glycol)-Modified Molecules From Degradable Hydrogels
  • Injectable Implant
  • In-Situ Gel Formation Of Pectin
  • Multi-Arm Block Copolymers As Drug Delivery Vehicles
  • Pharmacological Compositions Comprising Pectins Having High Molecular Weights And Low Degrees Of Methoxylation
  • Hemostatic Sponge
  • Process For Making Dry And Stable Hemostatic Compositions
  • Polymer Compounds And A Preparation Method Thereof
  • Device For Promotion Of Hemostasis And/Or Wound Healing
  • Vacuum Expanded Dry Composition And Syringe For Retaining Same
  • Dry Haemostatic Composition
  • Use Of A Regenerative Biofunctional Collagen Biomatrix For Treating Visceral Or Parietal Defects
  • Viscous Wellbore Fluids
  • Degradable Poly(Ethylene Glycol) Hydrogels With Controlled Half-Life And Precursors Therefor
  • Pharmaceutical Compositions Comprising Aloe Pectins, And Methods For Their Production And Use
  • Dry Haemostatic Composition
  • Biodegradable Neurotoxin Implant
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Neurotoxin Implant
  • Methods Of Making Functional Biodegradable Polymers
  • Biodegradable Cationic Copolymers Of Poly (Alkylenimine) And Poly (Ethylene Glycol) For The Delivery Of Bioactive Agents
  • Controlled Release Neurotoxin System
  • In Situ Forming Hydrogels
  • Dry Hemostatic Compositions And Methods For Their Preparation
  • Methods For The Treatment Of Pediatric Otic Disorders
  • Hemostatic Sponge
  • Use Of Encapsulated Chemical During Fracturing
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Method For The Improvement Of Mesh Implant Biocompatibility
  • Process For Making Dry And Stable Hemostatic Compositions
  • Delivery Of Physiological Agents With In-Situ Gels Comprising Anionic Polysaccharides
  • Controlled Release Compositions For Modulating Free-Radical Induced Damage And Methods Of Use Thereof
  • Auris Formulations For Treating Otic Diseases And Conditions
  • High Molecular Weight, Low Methoxyl Pectins, And Their Production And Uses
  • Injectable Drug Delivery Systems With Cyclodextrin-Polymer Based Hydrogels
  • Delivery Of Poly(Ethylene Glycol)-Modified Molecules From Degradable Hydrogels
  • Dry Hemostatic Compositions And Methods For Their Preparation
  • Polymer Compounds And A Preparation Method Thereof
  • Pharmaceutical Composition For Treatment Of Allergic Reactions
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Biodegradable Thermogelling Polymer
  • Temperature And Ph-Sensitive Block Copolymer Having Excellent Gel Strength
  • Phosphorus-Containing Compounds With Polymeric Chains, And Methods Of Making And Using The Same
  • Hemostatic Sponge
  • Optical Sensor For In Vivo Detection Of Analyte
  • Sterilization Of Ciprofloxacin Composition
  • Slow-Release, Self-Absorbing, Drug Delivery System
  • Rapidly Acting Dry Sealant And Methods For Use And Manufacture
  • Hemostatic Sponge
  • Delivery Of Poly(Ethylene Glycol)-Modified Molecules From Degradable Hydrogels
  • Ophthalmic Composition
  • Thermally Reversible Implant And Filler
  • Hemoactive Compositions And Methods For Their Manufacture And Use
  • Biodegradable Triblock Copolymers, Synthesis Methods Therefore, And Hydrogels And Biomaterials Made There From
  • Multi-Arm Block Copolymers As Drug Delivery Vehicles
  • Method For The Improvement Of Mesh Implant Biocompatibility
  • Aptamer-Based Sensors, Implantable Devices And Detection System
  • Hemostatic Sponge
  • Phosphorous-Containing Compounds With Polymeric Chains, And Methods Of Making And Using The Same
  • Hollow Fiber, Dope Composition For Forming Hollow Fiber, And Method Of Preparing Hollow Fiber Using The Same
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Polyimide-Co-Polybenzoxazole Copolymer, Preparation Method Thereof, And Gas Separation Membrane Comprising The Same
  • Hemoactive Compositions And Methods For Their Manufacture And Use
  • Environment Responsive Gelling Copolymer
  • Ophthalmic Composition
  • Process For Making Dry And Stable Hemostatic Compositions
  • Reverse Thermal Gels And Uses Therefor
  • Hemostatic Sponge
  • Polymer Compounds And A Preparation Method Thereof
  • Pharmaceutical Composition For Treatment Of Allergic Reactions
  • Use Of Encapsulated Tracers
  • Bab Triblock Polymers Having Improved Release Characteristics
  • Optical Sensor For In Situ Measurement Of Analytes
  • Thermosensitive And Biodegradable Microgel And A Method For The Preparation Thereof
  • Multi-Arm Block Copolymers As Drug Delivery Vehicles
  • Thermogelling Biodegradable Aqueous Polymer Solution
  • Dry Hemostatic Compositions And Methods For Their Preparation
  • Phosphorus-Containing Compounds With Polymeric Chains, And Methods Of Making And Using The Same
  • Method For Directed Cell In-Growth And Controlled Tissue Regeneration In Spinal Surgery
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/42218

    DOI

    http://dx.doi.org/10.1038/42218

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022728510

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9278046


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biodegradation, Environmental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Delayed-Action Preparations", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dextrans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Delivery Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescein-5-isothiocyanate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Injections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lactic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyesters", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyethylene Glycols", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeong", 
            "givenName": "Byeongmoon", 
            "id": "sg:person.01220467343.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220467343.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bae", 
            "givenName": "You Han", 
            "id": "sg:person.01317224574.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317224574.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Doo Sung", 
            "id": "sg:person.0633347701.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633347701.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Sung Wan", 
            "id": "sg:person.010331273234.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010331273234.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/app.1984.070290119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002713349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/marc.1987.030081002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022577059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-3659(93)90155-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024345845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-3659(93)90155-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024345845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/373049a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033718293", 
              "https://doi.org/10.1038/373049a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-4636(199601)30:1<31::aid-jbm5>3.0.co;2-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036654101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354291a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036916751", 
              "https://doi.org/10.1038/354291a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/app.1990.070390101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048007820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00115a039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055707963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma00046a049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056174570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma00087a009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056176789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2218494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062527623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077996855", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-08", 
        "datePublishedReg": "1997-08-01", 
        "description": "Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (known as poloxamers) are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel-sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 degrees C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/42218", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6645", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "388"
          }
        ], 
        "name": "Biodegradable block copolymers as injectable drug-delivery systems", 
        "pagination": "860-862", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c4821738c57628a4e6bde2c26a6190833b4f9630812faa5dc86ef805579c5a6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9278046"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/42218"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022728510"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/42218", 
          "https://app.dimensions.ai/details/publication/pub.1022728510"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/42218"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/42218'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/42218'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/42218'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/42218'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      54 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/42218 schema:about N09b1013825d2438486cc5f87c62b979e
    2 N3f9fb06c81b749bab39c5f87f3773128
    3 N4a6a944dc75b4f7d962b2feecbd9d6df
    4 N59aa2687330f4afd85a1fdbb438362a5
    5 N687d33b523734bb5be2302de39b6386d
    6 N75197276ffcd472c8ecea10467285d40
    7 N83f09c8d86ad4c4896645888cf8cb0a6
    8 N8bb144b3b23e47ddb9786b47347506ad
    9 N9f727f18afca4c2484ea75e4f87f08bf
    10 Na0ef6379cbf44ded8bd4a0b0392d31fe
    11 Nba1c0303a60748329f4525b0c2ffbf50
    12 Nbacc849a577a4249ba292a4f32d5277f
    13 Nbe557973be6d489f8d3baeb675a921de
    14 anzsrc-for:03
    15 anzsrc-for:0303
    16 schema:author Ne30392f6c8c74135af1095894f877f2b
    17 schema:citation sg:pub.10.1038/354291a0
    18 sg:pub.10.1038/373049a0
    19 https://app.dimensions.ai/details/publication/pub.1077996855
    20 https://doi.org/10.1002/(sici)1097-4636(199601)30:1<31::aid-jbm5>3.0.co;2-s
    21 https://doi.org/10.1002/app.1984.070290119
    22 https://doi.org/10.1002/app.1990.070390101
    23 https://doi.org/10.1002/marc.1987.030081002
    24 https://doi.org/10.1016/0168-3659(93)90155-x
    25 https://doi.org/10.1021/ja00115a039
    26 https://doi.org/10.1021/ma00046a049
    27 https://doi.org/10.1021/ma00087a009
    28 https://doi.org/10.1126/science.2218494
    29 schema:datePublished 1997-08
    30 schema:datePublishedReg 1997-08-01
    31 schema:description Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (known as poloxamers) are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel-sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 degrees C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf Na2534c0049e54e1e8a89ff4d0dbf61ee
    36 Nf5462aaf513646b0ae0480543be42624
    37 sg:journal.1018957
    38 schema:name Biodegradable block copolymers as injectable drug-delivery systems
    39 schema:pagination 860-862
    40 schema:productId N129539054a184510878dd17378013153
    41 N8478bb25d08147708668fbd5f94308aa
    42 Nccbf30304b3a48b298d5ff1371c2128e
    43 Ne09a06a3adb74731ae039ee5b6bae2e0
    44 Ne8d7a125b9e64788bc4ba85724fad5e3
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022728510
    46 https://doi.org/10.1038/42218
    47 schema:sdDatePublished 2019-04-11T12:24
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N49ee10cf925340f18cc19fd223e4fd7d
    50 schema:url http://www.nature.com/articles/42218
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N09b1013825d2438486cc5f87c62b979e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    55 schema:name Polyesters
    56 rdf:type schema:DefinedTerm
    57 N129539054a184510878dd17378013153 schema:name dimensions_id
    58 schema:value pub.1022728510
    59 rdf:type schema:PropertyValue
    60 N1d954ae21b754899b37049a02887e259 rdf:first sg:person.010331273234.54
    61 rdf:rest rdf:nil
    62 N3a330a82864a4aed827f27034356f612 rdf:first sg:person.0633347701.51
    63 rdf:rest N1d954ae21b754899b37049a02887e259
    64 N3f9fb06c81b749bab39c5f87f3773128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Biodegradation, Environmental
    66 rdf:type schema:DefinedTerm
    67 N49ee10cf925340f18cc19fd223e4fd7d schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N4a6a944dc75b4f7d962b2feecbd9d6df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Dextrans
    71 rdf:type schema:DefinedTerm
    72 N59aa2687330f4afd85a1fdbb438362a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Fluorescein-5-isothiocyanate
    74 rdf:type schema:DefinedTerm
    75 N687d33b523734bb5be2302de39b6386d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Animals
    77 rdf:type schema:DefinedTerm
    78 N75197276ffcd472c8ecea10467285d40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Polymers
    80 rdf:type schema:DefinedTerm
    81 N83f09c8d86ad4c4896645888cf8cb0a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Drug Delivery Systems
    83 rdf:type schema:DefinedTerm
    84 N8478bb25d08147708668fbd5f94308aa schema:name pubmed_id
    85 schema:value 9278046
    86 rdf:type schema:PropertyValue
    87 N8bb144b3b23e47ddb9786b47347506ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Rats
    89 rdf:type schema:DefinedTerm
    90 N8e0f5f1ebf43463fa1b58f1c706ea8e5 rdf:first sg:person.01317224574.17
    91 rdf:rest N3a330a82864a4aed827f27034356f612
    92 N9f727f18afca4c2484ea75e4f87f08bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Injections
    94 rdf:type schema:DefinedTerm
    95 Na0ef6379cbf44ded8bd4a0b0392d31fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Gels
    97 rdf:type schema:DefinedTerm
    98 Na2534c0049e54e1e8a89ff4d0dbf61ee schema:issueNumber 6645
    99 rdf:type schema:PublicationIssue
    100 Nba1c0303a60748329f4525b0c2ffbf50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Polyethylene Glycols
    102 rdf:type schema:DefinedTerm
    103 Nbacc849a577a4249ba292a4f32d5277f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Delayed-Action Preparations
    105 rdf:type schema:DefinedTerm
    106 Nbe557973be6d489f8d3baeb675a921de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Lactic Acid
    108 rdf:type schema:DefinedTerm
    109 Nccbf30304b3a48b298d5ff1371c2128e schema:name readcube_id
    110 schema:value 6c4821738c57628a4e6bde2c26a6190833b4f9630812faa5dc86ef805579c5a6
    111 rdf:type schema:PropertyValue
    112 Ne09a06a3adb74731ae039ee5b6bae2e0 schema:name nlm_unique_id
    113 schema:value 0410462
    114 rdf:type schema:PropertyValue
    115 Ne30392f6c8c74135af1095894f877f2b rdf:first sg:person.01220467343.79
    116 rdf:rest N8e0f5f1ebf43463fa1b58f1c706ea8e5
    117 Ne8d7a125b9e64788bc4ba85724fad5e3 schema:name doi
    118 schema:value 10.1038/42218
    119 rdf:type schema:PropertyValue
    120 Nf5462aaf513646b0ae0480543be42624 schema:volumeNumber 388
    121 rdf:type schema:PublicationVolume
    122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Chemical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Macromolecular and Materials Chemistry
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1018957 schema:issn 0090-0028
    129 1476-4687
    130 schema:name Nature
    131 rdf:type schema:Periodical
    132 sg:person.010331273234.54 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    133 schema:familyName Kim
    134 schema:givenName Sung Wan
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010331273234.54
    136 rdf:type schema:Person
    137 sg:person.01220467343.79 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    138 schema:familyName Jeong
    139 schema:givenName Byeongmoon
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220467343.79
    141 rdf:type schema:Person
    142 sg:person.01317224574.17 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    143 schema:familyName Bae
    144 schema:givenName You Han
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317224574.17
    146 rdf:type schema:Person
    147 sg:person.0633347701.51 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    148 schema:familyName Lee
    149 schema:givenName Doo Sung
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633347701.51
    151 rdf:type schema:Person
    152 sg:pub.10.1038/354291a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036916751
    153 https://doi.org/10.1038/354291a0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/373049a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033718293
    156 https://doi.org/10.1038/373049a0
    157 rdf:type schema:CreativeWork
    158 https://app.dimensions.ai/details/publication/pub.1077996855 schema:CreativeWork
    159 https://doi.org/10.1002/(sici)1097-4636(199601)30:1<31::aid-jbm5>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654101
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1002/app.1984.070290119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002713349
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1002/app.1990.070390101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048007820
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1002/marc.1987.030081002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022577059
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0168-3659(93)90155-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345845
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1021/ja00115a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055707963
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1021/ma00046a049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056174570
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1021/ma00087a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056176789
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1126/science.2218494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062527623
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
    178 schema:name Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...