Biodegradable block copolymers as injectable drug-delivery systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

Byeongmoon Jeong, You Han Bae, Doo Sung Lee, Sung Wan Kim

ABSTRACT

Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (known as poloxamers) are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel-sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 degrees C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs. More... »

PAGES

860-862

Journal

TITLE

Nature

ISSUE

6645

VOLUME

388

Author Affiliations

Related Patents

  • Sterilization Of Ciprofloxacin Composition
  • Methods For Repairing And Regenerating Human Dura Mater
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Ophthalmic Composition
  • Thermogelling Oligopeptide Polymers
  • Reversible Geling Co-Polymer And Method Of Making
  • Biodegradable Botulinum Toxin Implant
  • Delivery Of Poly (Ethylene Glycol)-Modified Molecules From Degradable Hydrogels
  • Injectable Implant
  • In-Situ Gel Formation Of Pectin
  • Multi-Arm Block Copolymers As Drug Delivery Vehicles
  • Pharmacological Compositions Comprising Pectins Having High Molecular Weights And Low Degrees Of Methoxylation
  • Hemostatic Sponge
  • Process For Making Dry And Stable Hemostatic Compositions
  • Polymer Compounds And A Preparation Method Thereof
  • Device For Promotion Of Hemostasis And/Or Wound Healing
  • Vacuum Expanded Dry Composition And Syringe For Retaining Same
  • Dry Haemostatic Composition
  • Use Of A Regenerative Biofunctional Collagen Biomatrix For Treating Visceral Or Parietal Defects
  • Viscous Wellbore Fluids
  • Degradable Poly(Ethylene Glycol) Hydrogels With Controlled Half-Life And Precursors Therefor
  • Pharmaceutical Compositions Comprising Aloe Pectins, And Methods For Their Production And Use
  • Dry Haemostatic Composition
  • Biodegradable Neurotoxin Implant
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Neurotoxin Implant
  • Methods Of Making Functional Biodegradable Polymers
  • Biodegradable Cationic Copolymers Of Poly (Alkylenimine) And Poly (Ethylene Glycol) For The Delivery Of Bioactive Agents
  • Controlled Release Neurotoxin System
  • In Situ Forming Hydrogels
  • Dry Hemostatic Compositions And Methods For Their Preparation
  • Methods For The Treatment Of Pediatric Otic Disorders
  • Hemostatic Sponge
  • Use Of Encapsulated Chemical During Fracturing
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Method For The Improvement Of Mesh Implant Biocompatibility
  • Process For Making Dry And Stable Hemostatic Compositions
  • Delivery Of Physiological Agents With In-Situ Gels Comprising Anionic Polysaccharides
  • Controlled Release Compositions For Modulating Free-Radical Induced Damage And Methods Of Use Thereof
  • Auris Formulations For Treating Otic Diseases And Conditions
  • High Molecular Weight, Low Methoxyl Pectins, And Their Production And Uses
  • Injectable Drug Delivery Systems With Cyclodextrin-Polymer Based Hydrogels
  • Delivery Of Poly(Ethylene Glycol)-Modified Molecules From Degradable Hydrogels
  • Dry Hemostatic Compositions And Methods For Their Preparation
  • Polymer Compounds And A Preparation Method Thereof
  • Pharmaceutical Composition For Treatment Of Allergic Reactions
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Biodegradable Thermogelling Polymer
  • Temperature And Ph-Sensitive Block Copolymer Having Excellent Gel Strength
  • Phosphorus-Containing Compounds With Polymeric Chains, And Methods Of Making And Using The Same
  • Hemostatic Sponge
  • Optical Sensor For In Vivo Detection Of Analyte
  • Sterilization Of Ciprofloxacin Composition
  • Slow-Release, Self-Absorbing, Drug Delivery System
  • Rapidly Acting Dry Sealant And Methods For Use And Manufacture
  • Hemostatic Sponge
  • Delivery Of Poly(Ethylene Glycol)-Modified Molecules From Degradable Hydrogels
  • Ophthalmic Composition
  • Thermally Reversible Implant And Filler
  • Hemoactive Compositions And Methods For Their Manufacture And Use
  • Biodegradable Triblock Copolymers, Synthesis Methods Therefore, And Hydrogels And Biomaterials Made There From
  • Multi-Arm Block Copolymers As Drug Delivery Vehicles
  • Method For The Improvement Of Mesh Implant Biocompatibility
  • Aptamer-Based Sensors, Implantable Devices And Detection System
  • Hemostatic Sponge
  • Phosphorous-Containing Compounds With Polymeric Chains, And Methods Of Making And Using The Same
  • Hollow Fiber, Dope Composition For Forming Hollow Fiber, And Method Of Preparing Hollow Fiber Using The Same
  • Fragmented Polymeric Compositions And Methods For Their Use
  • Controlled Release Antimicrobial Compositions And Methods For The Treatment Of Otic Disorders
  • Polyimide-Co-Polybenzoxazole Copolymer, Preparation Method Thereof, And Gas Separation Membrane Comprising The Same
  • Dry Hemostatic Compositions And Methods For Their Preparation
  • Phosphorus-Containing Compounds With Polymeric Chains, And Methods Of Making And Using The Same
  • Ophthalmic Composition
  • Reverse Thermal Gels And Uses Therefor
  • Process For Making Dry And Stable Hemostatic Compositions
  • Thermosensitive And Biodegradable Microgel And A Method For The Preparation Thereof
  • Environment Responsive Gelling Copolymer
  • Thermogelling Biodegradable Aqueous Polymer Solution
  • Multi-Arm Block Copolymers As Drug Delivery Vehicles
  • Hemostatic Sponge
  • Hemoactive Compositions And Methods For Their Manufacture And Use
  • Bab Triblock Polymers Having Improved Release Characteristics
  • Polymer Compounds And A Preparation Method Thereof
  • Method For Directed Cell In-Growth And Controlled Tissue Regeneration In Spinal Surgery
  • Use Of Encapsulated Tracers
  • Pharmaceutical Composition For Treatment Of Allergic Reactions
  • Optical Sensor For In Situ Measurement Of Analytes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/42218

    DOI

    http://dx.doi.org/10.1038/42218

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022728510

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9278046


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biodegradation, Environmental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Delayed-Action Preparations", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dextrans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Delivery Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescein-5-isothiocyanate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Injections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lactic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyesters", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyethylene Glycols", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeong", 
            "givenName": "Byeongmoon", 
            "id": "sg:person.01220467343.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220467343.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bae", 
            "givenName": "You Han", 
            "id": "sg:person.01317224574.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317224574.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Doo Sung", 
            "id": "sg:person.0633347701.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633347701.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Utah", 
              "id": "https://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Sung Wan", 
            "id": "sg:person.010331273234.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010331273234.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/app.1984.070290119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002713349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/marc.1987.030081002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022577059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-3659(93)90155-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024345845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-3659(93)90155-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024345845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/373049a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033718293", 
              "https://doi.org/10.1038/373049a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-4636(199601)30:1<31::aid-jbm5>3.0.co;2-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036654101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354291a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036916751", 
              "https://doi.org/10.1038/354291a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/app.1990.070390101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048007820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00115a039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055707963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma00046a049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056174570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma00087a009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056176789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2218494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062527623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077996855", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-08", 
        "datePublishedReg": "1997-08-01", 
        "description": "Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (known as poloxamers) are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel-sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 degrees C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/42218", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6645", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "388"
          }
        ], 
        "name": "Biodegradable block copolymers as injectable drug-delivery systems", 
        "pagination": "860-862", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c4821738c57628a4e6bde2c26a6190833b4f9630812faa5dc86ef805579c5a6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9278046"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/42218"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022728510"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/42218", 
          "https://app.dimensions.ai/details/publication/pub.1022728510"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/42218"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/42218'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/42218'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/42218'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/42218'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      54 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/42218 schema:about N10fa6f26a3f54960a7badb9dc317e10e
    2 N2a6cc7d55d6a404684250cf82177dd86
    3 N346ec65931c0461c8a634bed235e1385
    4 N3f6e390500c24e60a1db1b0ebddf76b6
    5 N4d04959d6abc4e3da38a1c9b2b8a122f
    6 N4d5514d1b3aa4588bad954160d70b6bd
    7 Na04c34d2cbed4482a31152b2607543b1
    8 Nec94dd17fc674642a22ae3a0d29e7a91
    9 Nf28af2a2bee94f9e83824667f7cfc564
    10 Nf558a917e5154017bb9b75228143f3a5
    11 Nf69cfabf3f8849538d91b0ae5a0da523
    12 Nfa2dd73be3874d29a0d7eaa112730695
    13 Nfb4b01ff5a6843b4985bc8c001177457
    14 anzsrc-for:03
    15 anzsrc-for:0303
    16 schema:author N564c6445fac14e49907e4579de88643a
    17 schema:citation sg:pub.10.1038/354291a0
    18 sg:pub.10.1038/373049a0
    19 https://app.dimensions.ai/details/publication/pub.1077996855
    20 https://doi.org/10.1002/(sici)1097-4636(199601)30:1<31::aid-jbm5>3.0.co;2-s
    21 https://doi.org/10.1002/app.1984.070290119
    22 https://doi.org/10.1002/app.1990.070390101
    23 https://doi.org/10.1002/marc.1987.030081002
    24 https://doi.org/10.1016/0168-3659(93)90155-x
    25 https://doi.org/10.1021/ja00115a039
    26 https://doi.org/10.1021/ma00046a049
    27 https://doi.org/10.1021/ma00087a009
    28 https://doi.org/10.1126/science.2218494
    29 schema:datePublished 1997-08
    30 schema:datePublishedReg 1997-08-01
    31 schema:description Polymers that display a physicochemical response to stimuli are widely explored as potential drug-delivery systems. Stimuli studied to date include chemical substances and changes in temperature, pH and electric field. Homopolymers or copolymers of N-isopropylacrylamide and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (known as poloxamers) are typical examples of thermosensitive polymers, but their use in drug delivery is problematic because they are toxic and non-biodegradable. Biodegradable polymers used for drug delivery to date have mostly been in the form of injectable microspheres or implant systems, which require complicated fabrication processes using organic solvents. Such systems have the disadvantage that the use of organic solvents can cause denaturation when protein drugs are to be encapsulated. Furthermore, the solid form requires surgical insertion, which often results in tissue irritation and damage. Here we report the synthesis of a thermosensitive, biodegradable hydrogel consisting of blocks of poly(ethylene oxide) and poly(L-lactic acid). Aqueous solutions of these copolymers exhibit temperature-dependent reversible gel-sol transitions. The hydrogel can be loaded with bioactive molecules in an aqueous phase at an elevated temperature (around 45 degrees C), where they form a sol. In this form, the polymer is injectable. On subcutaneous injection and subsequent rapid cooling to body temperature, the loaded copolymer forms a gel that can act as a sustained-release matrix for drugs.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf Na48ad973a85344f0841e16e9461219d0
    36 Nfca0593d7b2445a3b00c9864691f5d00
    37 sg:journal.1018957
    38 schema:name Biodegradable block copolymers as injectable drug-delivery systems
    39 schema:pagination 860-862
    40 schema:productId N1cddc270818349f992fdb1636527191c
    41 N378f2cdda2884c1d9483324282946dd9
    42 N8a87f33623e6413a967013b1aa9e6ab0
    43 N8da2a41e7d5c4929b711cd66503c5ec1
    44 Nd10690962941428c8144de9771ed35d2
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022728510
    46 https://doi.org/10.1038/42218
    47 schema:sdDatePublished 2019-04-11T12:24
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N502225cd94954e188deb585a0d7617cb
    50 schema:url http://www.nature.com/articles/42218
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N10fa6f26a3f54960a7badb9dc317e10e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    55 schema:name Polyethylene Glycols
    56 rdf:type schema:DefinedTerm
    57 N1cddc270818349f992fdb1636527191c schema:name dimensions_id
    58 schema:value pub.1022728510
    59 rdf:type schema:PropertyValue
    60 N1dcd5ea789c54a7892e240dc14911683 rdf:first sg:person.0633347701.51
    61 rdf:rest N48f87f87f07b40c4a6a3e646d8056f92
    62 N2a6cc7d55d6a404684250cf82177dd86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    63 schema:name Polyesters
    64 rdf:type schema:DefinedTerm
    65 N346ec65931c0461c8a634bed235e1385 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Dextrans
    67 rdf:type schema:DefinedTerm
    68 N378f2cdda2884c1d9483324282946dd9 schema:name readcube_id
    69 schema:value 6c4821738c57628a4e6bde2c26a6190833b4f9630812faa5dc86ef805579c5a6
    70 rdf:type schema:PropertyValue
    71 N3f6e390500c24e60a1db1b0ebddf76b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Gels
    73 rdf:type schema:DefinedTerm
    74 N48f87f87f07b40c4a6a3e646d8056f92 rdf:first sg:person.010331273234.54
    75 rdf:rest rdf:nil
    76 N4d04959d6abc4e3da38a1c9b2b8a122f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Fluorescein-5-isothiocyanate
    78 rdf:type schema:DefinedTerm
    79 N4d5514d1b3aa4588bad954160d70b6bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Rats
    81 rdf:type schema:DefinedTerm
    82 N502225cd94954e188deb585a0d7617cb schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N564c6445fac14e49907e4579de88643a rdf:first sg:person.01220467343.79
    85 rdf:rest Naa92b5273b8f46f2b0c94ade7447e126
    86 N8a87f33623e6413a967013b1aa9e6ab0 schema:name nlm_unique_id
    87 schema:value 0410462
    88 rdf:type schema:PropertyValue
    89 N8da2a41e7d5c4929b711cd66503c5ec1 schema:name pubmed_id
    90 schema:value 9278046
    91 rdf:type schema:PropertyValue
    92 Na04c34d2cbed4482a31152b2607543b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Injections
    94 rdf:type schema:DefinedTerm
    95 Na48ad973a85344f0841e16e9461219d0 schema:volumeNumber 388
    96 rdf:type schema:PublicationVolume
    97 Naa92b5273b8f46f2b0c94ade7447e126 rdf:first sg:person.01317224574.17
    98 rdf:rest N1dcd5ea789c54a7892e240dc14911683
    99 Nd10690962941428c8144de9771ed35d2 schema:name doi
    100 schema:value 10.1038/42218
    101 rdf:type schema:PropertyValue
    102 Nec94dd17fc674642a22ae3a0d29e7a91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Lactic Acid
    104 rdf:type schema:DefinedTerm
    105 Nf28af2a2bee94f9e83824667f7cfc564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Delayed-Action Preparations
    107 rdf:type schema:DefinedTerm
    108 Nf558a917e5154017bb9b75228143f3a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Drug Delivery Systems
    110 rdf:type schema:DefinedTerm
    111 Nf69cfabf3f8849538d91b0ae5a0da523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Animals
    113 rdf:type schema:DefinedTerm
    114 Nfa2dd73be3874d29a0d7eaa112730695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Biodegradation, Environmental
    116 rdf:type schema:DefinedTerm
    117 Nfb4b01ff5a6843b4985bc8c001177457 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Polymers
    119 rdf:type schema:DefinedTerm
    120 Nfca0593d7b2445a3b00c9864691f5d00 schema:issueNumber 6645
    121 rdf:type schema:PublicationIssue
    122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Chemical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Macromolecular and Materials Chemistry
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1018957 schema:issn 0090-0028
    129 1476-4687
    130 schema:name Nature
    131 rdf:type schema:Periodical
    132 sg:person.010331273234.54 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    133 schema:familyName Kim
    134 schema:givenName Sung Wan
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010331273234.54
    136 rdf:type schema:Person
    137 sg:person.01220467343.79 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    138 schema:familyName Jeong
    139 schema:givenName Byeongmoon
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220467343.79
    141 rdf:type schema:Person
    142 sg:person.01317224574.17 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    143 schema:familyName Bae
    144 schema:givenName You Han
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317224574.17
    146 rdf:type schema:Person
    147 sg:person.0633347701.51 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
    148 schema:familyName Lee
    149 schema:givenName Doo Sung
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633347701.51
    151 rdf:type schema:Person
    152 sg:pub.10.1038/354291a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036916751
    153 https://doi.org/10.1038/354291a0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/373049a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033718293
    156 https://doi.org/10.1038/373049a0
    157 rdf:type schema:CreativeWork
    158 https://app.dimensions.ai/details/publication/pub.1077996855 schema:CreativeWork
    159 https://doi.org/10.1002/(sici)1097-4636(199601)30:1<31::aid-jbm5>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654101
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1002/app.1984.070290119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002713349
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1002/app.1990.070390101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048007820
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1002/marc.1987.030081002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022577059
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0168-3659(93)90155-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345845
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1021/ja00115a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055707963
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1021/ma00046a049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056174570
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1021/ma00087a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056176789
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1126/science.2218494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062527623
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
    178 schema:name Biomedical Polymers Research Building, Room 205, CCCD/Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...