The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

Zhaohui Xu, Arthur L. Horwich, Paul B. Sigler

ABSTRACT

Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL–GroES–(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid. More... »

PAGES

741-750

References to SciGraph publications

  • 1989-02. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria in NATURE
  • 1989-12. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP in NATURE
  • 1991-07. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate in NATURE
  • 1997-08. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL in NATURE
  • 1994-09. Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy in NATURE
  • 1994-06. Structural determinants for activation of the α-subunit of a heterotrimeric G protein in NATURE
  • 1996-01. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution in NATURE
  • 1996-09. Release of both native and non-native proteins from a cis-only GroEL ternary complex in NATURE
  • 1993-07. Characterization of a functionally important mobile domain of GroES in NATURE
  • 1995-12-01. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1996-02. Protein folding in the central cavity of the GroEL–GroES chaperonin complex in NATURE
  • 1995-07. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-10. Residues in chaperonin GroEL required for polypeptide binding and release in NATURE
  • 1996-06. Molecular chaperones in cellular protein folding in NATURE
  • 1991-09. Binding of chaperonins in NATURE
  • 1996-02. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-10. The crystal structure of the bacterial chaperonln GroEL at 2.8 Å in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/41944

    DOI

    http://dx.doi.org/10.1038/41944

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008151844

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9285585


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine Diphosphate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Allosteric Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding Sites", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chaperonin 10", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chaperonin 60", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallography, X-Ray", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Folding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Zhaohui", 
            "id": "sg:person.0576721423.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576721423.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Horwich", 
            "givenName": "Arthur L.", 
            "id": "sg:person.01035561741.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035561741.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sigler", 
            "givenName": "Paul B.", 
            "id": "sg:person.01307025762.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307025762.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/383096a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018344451", 
              "https://doi.org/10.1038/383096a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/364255a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028460123", 
              "https://doi.org/10.1038/364255a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379037a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044840084", 
              "https://doi.org/10.1038/379037a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/337620a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014612106", 
              "https://doi.org/10.1038/337620a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379420a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015415554", 
              "https://doi.org/10.1038/379420a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371614a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008432057", 
              "https://doi.org/10.1038/371614a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371261a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005141421", 
              "https://doi.org/10.1038/371261a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0795-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012082716", 
              "https://doi.org/10.1038/nsb0795-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369621a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037031151", 
              "https://doi.org/10.1038/369621a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb1295-1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003523499", 
              "https://doi.org/10.1038/nsb1295-1083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371578a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022157325", 
              "https://doi.org/10.1038/371578a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037404000", 
              "https://doi.org/10.1038/42047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381571a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029280955", 
              "https://doi.org/10.1038/381571a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/342884a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034565462", 
              "https://doi.org/10.1038/342884a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/352036a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003058860", 
              "https://doi.org/10.1038/352036a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353025b0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030262026", 
              "https://doi.org/10.1038/353025b0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0296-170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024700733", 
              "https://doi.org/10.1038/nsb0296-170"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-08", 
        "datePublishedReg": "1997-08-01", 
        "description": "Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL\u2013GroES\u2013(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/41944", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6644", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "388"
          }
        ], 
        "keywords": [
          "apical domain", 
          "multi-subunit protein assemblies", 
          "cis ring", 
          "rings of subunits", 
          "co-chaperonin GroES", 
          "peptide-binding residues", 
          "asymmetric GroEL", 
          "chaperonin complex", 
          "trans ring", 
          "second GroES", 
          "consumption of ATP", 
          "protein assemblies", 
          "bloc movement", 
          "protein folding", 
          "GroES", 
          "GroEL subunit", 
          "allosteric mechanism", 
          "equatorial domain", 
          "Escherichia coli", 
          "double toroid", 
          "GroEL", 
          "outward tilt", 
          "asymmetric intermediate", 
          "central cavity", 
          "subunits", 
          "inward tilt", 
          "chaperonin", 
          "domain", 
          "coli", 
          "protein", 
          "nucleotides", 
          "folding", 
          "ATP", 
          "residues", 
          "crystal structure", 
          "assembly", 
          "binding", 
          "ADP", 
          "complexes", 
          "intermediates", 
          "mechanism", 
          "structure", 
          "cycle", 
          "ring", 
          "twist", 
          "elevation", 
          "movement", 
          "toroids", 
          "cavity lining", 
          "chamber", 
          "results", 
          "lining", 
          "model", 
          "cavity", 
          "interface", 
          "consumption", 
          "volume", 
          "back", 
          "tilt", 
          "functional results", 
          "hydrophobic peptide-binding residues", 
          "hydrophilic cavity lining", 
          "cis equatorial domain", 
          "new functional results", 
          "negative allosteric mechanism"
        ], 
        "name": "The crystal structure of the asymmetric GroEL\u2013GroES\u2013(ADP)7 chaperonin complex", 
        "pagination": "741-750", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008151844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/41944"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9285585"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/41944", 
          "https://app.dimensions.ai/details/publication/pub.1008151844"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_278.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/41944"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/41944'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/41944'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/41944'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/41944'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      22 PREDICATES      123 URIs      98 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/41944 schema:about N03491d7742574152bda903ba6253b703
    2 N2a95388525fc4814a1b898e482dbdfcf
    3 N3024255d194040bebb9e3d6fcb6b7424
    4 N374035348ed94dbfb7e428cb99a0baba
    5 N3887398cf40940cab98aaff712308865
    6 N4d1df47ee3a74cfcbe13235b19b25a9b
    7 N598d0a757bff4302887c1d4f57d2e3fa
    8 N842a61d049e5418d9feed871d4e0f312
    9 Na458eb4ba1ee4b18848e061e0ce7efa6
    10 Na929159a8e2444d880782696723be761
    11 Nc7cd792712fc418e99eea9374e909300
    12 Nc8f6fb10d3e34a2882f99cb4b89ef8aa
    13 Nc9f72039d9174797a5ab17cefd82f8e4
    14 Nd0226863bb384cdfb6c4a94c03642292
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 schema:author N060f6e0c223d4db48fbde0e4c9b76606
    18 schema:citation sg:pub.10.1038/337620a0
    19 sg:pub.10.1038/342884a0
    20 sg:pub.10.1038/352036a0
    21 sg:pub.10.1038/353025b0
    22 sg:pub.10.1038/364255a0
    23 sg:pub.10.1038/369621a0
    24 sg:pub.10.1038/371261a0
    25 sg:pub.10.1038/371578a0
    26 sg:pub.10.1038/371614a0
    27 sg:pub.10.1038/379037a0
    28 sg:pub.10.1038/379420a0
    29 sg:pub.10.1038/381571a0
    30 sg:pub.10.1038/383096a0
    31 sg:pub.10.1038/42047
    32 sg:pub.10.1038/nsb0296-170
    33 sg:pub.10.1038/nsb0795-587
    34 sg:pub.10.1038/nsb1295-1083
    35 schema:datePublished 1997-08
    36 schema:datePublishedReg 1997-08-01
    37 schema:description Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL–GroES–(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf Ne055c81c7f91491b95add409ce2c9311
    42 Ne35f45e696e7420bb4a32d889efb3e79
    43 sg:journal.1018957
    44 schema:keywords ADP
    45 ATP
    46 Escherichia coli
    47 GroEL
    48 GroEL subunit
    49 GroES
    50 allosteric mechanism
    51 apical domain
    52 assembly
    53 asymmetric GroEL
    54 asymmetric intermediate
    55 back
    56 binding
    57 bloc movement
    58 cavity
    59 cavity lining
    60 central cavity
    61 chamber
    62 chaperonin
    63 chaperonin complex
    64 cis equatorial domain
    65 cis ring
    66 co-chaperonin GroES
    67 coli
    68 complexes
    69 consumption
    70 consumption of ATP
    71 crystal structure
    72 cycle
    73 domain
    74 double toroid
    75 elevation
    76 equatorial domain
    77 folding
    78 functional results
    79 hydrophilic cavity lining
    80 hydrophobic peptide-binding residues
    81 interface
    82 intermediates
    83 inward tilt
    84 lining
    85 mechanism
    86 model
    87 movement
    88 multi-subunit protein assemblies
    89 negative allosteric mechanism
    90 new functional results
    91 nucleotides
    92 outward tilt
    93 peptide-binding residues
    94 protein
    95 protein assemblies
    96 protein folding
    97 residues
    98 results
    99 ring
    100 rings of subunits
    101 second GroES
    102 structure
    103 subunits
    104 tilt
    105 toroids
    106 trans ring
    107 twist
    108 volume
    109 schema:name The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
    110 schema:pagination 741-750
    111 schema:productId N4937b53dd5da4450ba35dbbf7976a70c
    112 N547a836e3bb844e78f9de0be0eb9f421
    113 Nffa55177bf1043dfa39d71c1637c2e20
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008151844
    115 https://doi.org/10.1038/41944
    116 schema:sdDatePublished 2021-12-01T19:10
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N8fb8ee76311c4e7ea5bd9c6b58ab0d9c
    119 schema:url https://doi.org/10.1038/41944
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N03491d7742574152bda903ba6253b703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Molecular Sequence Data
    125 rdf:type schema:DefinedTerm
    126 N060f6e0c223d4db48fbde0e4c9b76606 rdf:first sg:person.0576721423.91
    127 rdf:rest Nc60cc24370984817817982b00484f3db
    128 N2a95388525fc4814a1b898e482dbdfcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Escherichia coli
    130 rdf:type schema:DefinedTerm
    131 N3024255d194040bebb9e3d6fcb6b7424 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Chaperonin 60
    133 rdf:type schema:DefinedTerm
    134 N374035348ed94dbfb7e428cb99a0baba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Binding Sites
    136 rdf:type schema:DefinedTerm
    137 N3887398cf40940cab98aaff712308865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Protein Conformation
    139 rdf:type schema:DefinedTerm
    140 N4937b53dd5da4450ba35dbbf7976a70c schema:name pubmed_id
    141 schema:value 9285585
    142 rdf:type schema:PropertyValue
    143 N4d1df47ee3a74cfcbe13235b19b25a9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Amino Acid Sequence
    145 rdf:type schema:DefinedTerm
    146 N547a836e3bb844e78f9de0be0eb9f421 schema:name doi
    147 schema:value 10.1038/41944
    148 rdf:type schema:PropertyValue
    149 N598d0a757bff4302887c1d4f57d2e3fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Macromolecular Substances
    151 rdf:type schema:DefinedTerm
    152 N842a61d049e5418d9feed871d4e0f312 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Protein Folding
    154 rdf:type schema:DefinedTerm
    155 N892075aa858c4735ab7f8e753bd60c39 rdf:first sg:person.01307025762.45
    156 rdf:rest rdf:nil
    157 N8fb8ee76311c4e7ea5bd9c6b58ab0d9c schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 Na458eb4ba1ee4b18848e061e0ce7efa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Crystallography, X-Ray
    161 rdf:type schema:DefinedTerm
    162 Na929159a8e2444d880782696723be761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Chaperonin 10
    164 rdf:type schema:DefinedTerm
    165 Nc60cc24370984817817982b00484f3db rdf:first sg:person.01035561741.77
    166 rdf:rest N892075aa858c4735ab7f8e753bd60c39
    167 Nc7cd792712fc418e99eea9374e909300 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Allosteric Regulation
    169 rdf:type schema:DefinedTerm
    170 Nc8f6fb10d3e34a2882f99cb4b89ef8aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Models, Molecular
    172 rdf:type schema:DefinedTerm
    173 Nc9f72039d9174797a5ab17cefd82f8e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Adenosine Diphosphate
    175 rdf:type schema:DefinedTerm
    176 Nd0226863bb384cdfb6c4a94c03642292 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Recombinant Proteins
    178 rdf:type schema:DefinedTerm
    179 Ne055c81c7f91491b95add409ce2c9311 schema:issueNumber 6644
    180 rdf:type schema:PublicationIssue
    181 Ne35f45e696e7420bb4a32d889efb3e79 schema:volumeNumber 388
    182 rdf:type schema:PublicationVolume
    183 Nffa55177bf1043dfa39d71c1637c2e20 schema:name dimensions_id
    184 schema:value pub.1008151844
    185 rdf:type schema:PropertyValue
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Biochemistry and Cell Biology
    191 rdf:type schema:DefinedTerm
    192 sg:journal.1018957 schema:issn 0028-0836
    193 1476-4687
    194 schema:name Nature
    195 schema:publisher Springer Nature
    196 rdf:type schema:Periodical
    197 sg:person.01035561741.77 schema:affiliation grid-institutes:grid.47100.32
    198 schema:familyName Horwich
    199 schema:givenName Arthur L.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035561741.77
    201 rdf:type schema:Person
    202 sg:person.01307025762.45 schema:affiliation grid-institutes:grid.47100.32
    203 schema:familyName Sigler
    204 schema:givenName Paul B.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307025762.45
    206 rdf:type schema:Person
    207 sg:person.0576721423.91 schema:affiliation grid-institutes:grid.47100.32
    208 schema:familyName Xu
    209 schema:givenName Zhaohui
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576721423.91
    211 rdf:type schema:Person
    212 sg:pub.10.1038/337620a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014612106
    213 https://doi.org/10.1038/337620a0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/342884a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034565462
    216 https://doi.org/10.1038/342884a0
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/352036a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003058860
    219 https://doi.org/10.1038/352036a0
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/353025b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030262026
    222 https://doi.org/10.1038/353025b0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/364255a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028460123
    225 https://doi.org/10.1038/364255a0
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/369621a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037031151
    228 https://doi.org/10.1038/369621a0
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/371261a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005141421
    231 https://doi.org/10.1038/371261a0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/371578a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022157325
    234 https://doi.org/10.1038/371578a0
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/371614a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008432057
    237 https://doi.org/10.1038/371614a0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/379037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044840084
    240 https://doi.org/10.1038/379037a0
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/379420a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415554
    243 https://doi.org/10.1038/379420a0
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/381571a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029280955
    246 https://doi.org/10.1038/381571a0
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/383096a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018344451
    249 https://doi.org/10.1038/383096a0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/42047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037404000
    252 https://doi.org/10.1038/42047
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nsb0296-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700733
    255 https://doi.org/10.1038/nsb0296-170
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nsb0795-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012082716
    258 https://doi.org/10.1038/nsb0795-587
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nsb1295-1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003523499
    261 https://doi.org/10.1038/nsb1295-1083
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.47100.32 schema:alternateName The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA
    264 The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue
    265 schema:name The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA
    266 The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...