The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

Zhaohui Xu, Arthur L. Horwich, Paul B. Sigler

ABSTRACT

Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL–GroES–(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid. More... »

PAGES

741-750

References to SciGraph publications

  • 1989-02. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria in NATURE
  • 1989-12. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP in NATURE
  • 1991-07. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate in NATURE
  • 1997-08. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL in NATURE
  • 1994-09. Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy in NATURE
  • 1994-06. Structural determinants for activation of the α-subunit of a heterotrimeric G protein in NATURE
  • 1996-01. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution in NATURE
  • 1996-09. Release of both native and non-native proteins from a cis-only GroEL ternary complex in NATURE
  • 1993-07. Characterization of a functionally important mobile domain of GroES in NATURE
  • 1995-12-01. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1996-02. Protein folding in the central cavity of the GroEL–GroES chaperonin complex in NATURE
  • 1995-07. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-10. Residues in chaperonin GroEL required for polypeptide binding and release in NATURE
  • 1996-06. Molecular chaperones in cellular protein folding in NATURE
  • 1991-09. Binding of chaperonins in NATURE
  • 1996-02. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-10. The crystal structure of the bacterial chaperonln GroEL at 2.8 Å in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/41944

    DOI

    http://dx.doi.org/10.1038/41944

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008151844

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9285585


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine Diphosphate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Allosteric Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding Sites", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chaperonin 10", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chaperonin 60", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallography, X-Ray", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Folding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Zhaohui", 
            "id": "sg:person.0576721423.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576721423.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Horwich", 
            "givenName": "Arthur L.", 
            "id": "sg:person.01035561741.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035561741.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue", 
              "id": "http://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sigler", 
            "givenName": "Paul B.", 
            "id": "sg:person.01307025762.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307025762.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/383096a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018344451", 
              "https://doi.org/10.1038/383096a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/364255a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028460123", 
              "https://doi.org/10.1038/364255a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379037a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044840084", 
              "https://doi.org/10.1038/379037a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/337620a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014612106", 
              "https://doi.org/10.1038/337620a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379420a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015415554", 
              "https://doi.org/10.1038/379420a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371614a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008432057", 
              "https://doi.org/10.1038/371614a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371261a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005141421", 
              "https://doi.org/10.1038/371261a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0795-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012082716", 
              "https://doi.org/10.1038/nsb0795-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369621a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037031151", 
              "https://doi.org/10.1038/369621a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb1295-1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003523499", 
              "https://doi.org/10.1038/nsb1295-1083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371578a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022157325", 
              "https://doi.org/10.1038/371578a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037404000", 
              "https://doi.org/10.1038/42047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381571a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029280955", 
              "https://doi.org/10.1038/381571a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/342884a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034565462", 
              "https://doi.org/10.1038/342884a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/352036a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003058860", 
              "https://doi.org/10.1038/352036a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353025b0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030262026", 
              "https://doi.org/10.1038/353025b0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0296-170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024700733", 
              "https://doi.org/10.1038/nsb0296-170"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-08", 
        "datePublishedReg": "1997-08-01", 
        "description": "Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL\u2013GroES\u2013(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/41944", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6644", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "388"
          }
        ], 
        "keywords": [
          "apical domain", 
          "multi-subunit protein assemblies", 
          "cis ring", 
          "rings of subunits", 
          "co-chaperonin GroES", 
          "peptide-binding residues", 
          "asymmetric GroEL", 
          "chaperonin complex", 
          "trans ring", 
          "second GroES", 
          "consumption of ATP", 
          "protein assemblies", 
          "bloc movement", 
          "protein folding", 
          "GroES", 
          "GroEL subunit", 
          "allosteric mechanism", 
          "equatorial domain", 
          "Escherichia coli", 
          "double toroid", 
          "GroEL", 
          "outward tilt", 
          "asymmetric intermediate", 
          "central cavity", 
          "subunits", 
          "inward tilt", 
          "chaperonin", 
          "domain", 
          "coli", 
          "protein", 
          "nucleotides", 
          "folding", 
          "ATP", 
          "residues", 
          "crystal structure", 
          "assembly", 
          "binding", 
          "ADP", 
          "complexes", 
          "intermediates", 
          "mechanism", 
          "structure", 
          "cycle", 
          "ring", 
          "twist", 
          "elevation", 
          "movement", 
          "toroids", 
          "cavity lining", 
          "chamber", 
          "results", 
          "lining", 
          "model", 
          "cavity", 
          "interface", 
          "consumption", 
          "volume", 
          "back", 
          "tilt", 
          "functional results", 
          "hydrophobic peptide-binding residues", 
          "hydrophilic cavity lining", 
          "cis equatorial domain", 
          "new functional results", 
          "negative allosteric mechanism"
        ], 
        "name": "The crystal structure of the asymmetric GroEL\u2013GroES\u2013(ADP)7 chaperonin complex", 
        "pagination": "741-750", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008151844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/41944"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9285585"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/41944", 
          "https://app.dimensions.ai/details/publication/pub.1008151844"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_278.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/41944"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/41944'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/41944'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/41944'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/41944'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      22 PREDICATES      123 URIs      98 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/41944 schema:about N0de21e62521d40a7aca434f97a23f600
    2 N12ee8997fa25458b9bea2b855b47e51e
    3 N1f28ee4234c0407b80332af9f41f73e9
    4 N374b6ae20fa242a5bf06d95eca2ea1bd
    5 N4483fd3a6fba4ceb91f318d43572bd11
    6 N4654795f30544409b24fbfc813b35c34
    7 N551adffd902c4855b666aaa48d0d02c5
    8 N580cdafb0de2443c94fc1c33f521bf86
    9 N63fbb3af95a94a9281eb8717f8190460
    10 N8728b652975c490497acdedc0ca98af8
    11 N9203f10b9e024e5cb5020c864343be06
    12 Nbd734db8fec040e9a1b3da9ca2757817
    13 Ned5e74ab706641bc9713311740ac5aae
    14 Nf132a09cfcb3482ca9f6eef047ccb539
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 schema:author Nef8a3cec309245b79d39e27e1c493b77
    18 schema:citation sg:pub.10.1038/337620a0
    19 sg:pub.10.1038/342884a0
    20 sg:pub.10.1038/352036a0
    21 sg:pub.10.1038/353025b0
    22 sg:pub.10.1038/364255a0
    23 sg:pub.10.1038/369621a0
    24 sg:pub.10.1038/371261a0
    25 sg:pub.10.1038/371578a0
    26 sg:pub.10.1038/371614a0
    27 sg:pub.10.1038/379037a0
    28 sg:pub.10.1038/379420a0
    29 sg:pub.10.1038/381571a0
    30 sg:pub.10.1038/383096a0
    31 sg:pub.10.1038/42047
    32 sg:pub.10.1038/nsb0296-170
    33 sg:pub.10.1038/nsb0795-587
    34 sg:pub.10.1038/nsb1295-1083
    35 schema:datePublished 1997-08
    36 schema:datePublishedReg 1997-08-01
    37 schema:description Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL–GroES–(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N305a815adba743b2a47fb5c9b42de390
    42 N350f492a804a49a1ac9458388d531730
    43 sg:journal.1018957
    44 schema:keywords ADP
    45 ATP
    46 Escherichia coli
    47 GroEL
    48 GroEL subunit
    49 GroES
    50 allosteric mechanism
    51 apical domain
    52 assembly
    53 asymmetric GroEL
    54 asymmetric intermediate
    55 back
    56 binding
    57 bloc movement
    58 cavity
    59 cavity lining
    60 central cavity
    61 chamber
    62 chaperonin
    63 chaperonin complex
    64 cis equatorial domain
    65 cis ring
    66 co-chaperonin GroES
    67 coli
    68 complexes
    69 consumption
    70 consumption of ATP
    71 crystal structure
    72 cycle
    73 domain
    74 double toroid
    75 elevation
    76 equatorial domain
    77 folding
    78 functional results
    79 hydrophilic cavity lining
    80 hydrophobic peptide-binding residues
    81 interface
    82 intermediates
    83 inward tilt
    84 lining
    85 mechanism
    86 model
    87 movement
    88 multi-subunit protein assemblies
    89 negative allosteric mechanism
    90 new functional results
    91 nucleotides
    92 outward tilt
    93 peptide-binding residues
    94 protein
    95 protein assemblies
    96 protein folding
    97 residues
    98 results
    99 ring
    100 rings of subunits
    101 second GroES
    102 structure
    103 subunits
    104 tilt
    105 toroids
    106 trans ring
    107 twist
    108 volume
    109 schema:name The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex
    110 schema:pagination 741-750
    111 schema:productId N5e1c2ab190394396af1b4d404e2993e3
    112 N60c24fa8c77f497bb792782f557c53f1
    113 Na7df40c341ff45ff86099553be8b2774
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008151844
    115 https://doi.org/10.1038/41944
    116 schema:sdDatePublished 2021-12-01T19:10
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N56401328c5484ae4b36fdb9974a76504
    119 schema:url https://doi.org/10.1038/41944
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N0de21e62521d40a7aca434f97a23f600 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Binding Sites
    125 rdf:type schema:DefinedTerm
    126 N12ee8997fa25458b9bea2b855b47e51e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Allosteric Regulation
    128 rdf:type schema:DefinedTerm
    129 N1f28ee4234c0407b80332af9f41f73e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Adenosine Diphosphate
    131 rdf:type schema:DefinedTerm
    132 N208dbd3762cb40b9ad3ff4d655fc9706 rdf:first sg:person.01035561741.77
    133 rdf:rest N9384ebe80a0043b8aaaffa38d133ff68
    134 N305a815adba743b2a47fb5c9b42de390 schema:issueNumber 6644
    135 rdf:type schema:PublicationIssue
    136 N350f492a804a49a1ac9458388d531730 schema:volumeNumber 388
    137 rdf:type schema:PublicationVolume
    138 N374b6ae20fa242a5bf06d95eca2ea1bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Crystallography, X-Ray
    140 rdf:type schema:DefinedTerm
    141 N4483fd3a6fba4ceb91f318d43572bd11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Macromolecular Substances
    143 rdf:type schema:DefinedTerm
    144 N4654795f30544409b24fbfc813b35c34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Protein Conformation
    146 rdf:type schema:DefinedTerm
    147 N551adffd902c4855b666aaa48d0d02c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Protein Folding
    149 rdf:type schema:DefinedTerm
    150 N56401328c5484ae4b36fdb9974a76504 schema:name Springer Nature - SN SciGraph project
    151 rdf:type schema:Organization
    152 N580cdafb0de2443c94fc1c33f521bf86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Escherichia coli
    154 rdf:type schema:DefinedTerm
    155 N5e1c2ab190394396af1b4d404e2993e3 schema:name doi
    156 schema:value 10.1038/41944
    157 rdf:type schema:PropertyValue
    158 N60c24fa8c77f497bb792782f557c53f1 schema:name pubmed_id
    159 schema:value 9285585
    160 rdf:type schema:PropertyValue
    161 N63fbb3af95a94a9281eb8717f8190460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Models, Molecular
    163 rdf:type schema:DefinedTerm
    164 N8728b652975c490497acdedc0ca98af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Chaperonin 60
    166 rdf:type schema:DefinedTerm
    167 N9203f10b9e024e5cb5020c864343be06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Amino Acid Sequence
    169 rdf:type schema:DefinedTerm
    170 N9384ebe80a0043b8aaaffa38d133ff68 rdf:first sg:person.01307025762.45
    171 rdf:rest rdf:nil
    172 Na7df40c341ff45ff86099553be8b2774 schema:name dimensions_id
    173 schema:value pub.1008151844
    174 rdf:type schema:PropertyValue
    175 Nbd734db8fec040e9a1b3da9ca2757817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Molecular Sequence Data
    177 rdf:type schema:DefinedTerm
    178 Ned5e74ab706641bc9713311740ac5aae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Recombinant Proteins
    180 rdf:type schema:DefinedTerm
    181 Nef8a3cec309245b79d39e27e1c493b77 rdf:first sg:person.0576721423.91
    182 rdf:rest N208dbd3762cb40b9ad3ff4d655fc9706
    183 Nf132a09cfcb3482ca9f6eef047ccb539 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Chaperonin 10
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Biochemistry and Cell Biology
    191 rdf:type schema:DefinedTerm
    192 sg:journal.1018957 schema:issn 0028-0836
    193 1476-4687
    194 schema:name Nature
    195 schema:publisher Springer Nature
    196 rdf:type schema:Periodical
    197 sg:person.01035561741.77 schema:affiliation grid-institutes:grid.47100.32
    198 schema:familyName Horwich
    199 schema:givenName Arthur L.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035561741.77
    201 rdf:type schema:Person
    202 sg:person.01307025762.45 schema:affiliation grid-institutes:grid.47100.32
    203 schema:familyName Sigler
    204 schema:givenName Paul B.
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307025762.45
    206 rdf:type schema:Person
    207 sg:person.0576721423.91 schema:affiliation grid-institutes:grid.47100.32
    208 schema:familyName Xu
    209 schema:givenName Zhaohui
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576721423.91
    211 rdf:type schema:Person
    212 sg:pub.10.1038/337620a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014612106
    213 https://doi.org/10.1038/337620a0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/342884a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034565462
    216 https://doi.org/10.1038/342884a0
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/352036a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003058860
    219 https://doi.org/10.1038/352036a0
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/353025b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030262026
    222 https://doi.org/10.1038/353025b0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/364255a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028460123
    225 https://doi.org/10.1038/364255a0
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/369621a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037031151
    228 https://doi.org/10.1038/369621a0
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/371261a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005141421
    231 https://doi.org/10.1038/371261a0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/371578a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022157325
    234 https://doi.org/10.1038/371578a0
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/371614a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008432057
    237 https://doi.org/10.1038/371614a0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/379037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044840084
    240 https://doi.org/10.1038/379037a0
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/379420a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415554
    243 https://doi.org/10.1038/379420a0
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/381571a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029280955
    246 https://doi.org/10.1038/381571a0
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/383096a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018344451
    249 https://doi.org/10.1038/383096a0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/42047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037404000
    252 https://doi.org/10.1038/42047
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nsb0296-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700733
    255 https://doi.org/10.1038/nsb0296-170
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nsb0795-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012082716
    258 https://doi.org/10.1038/nsb0795-587
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nsb1295-1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003523499
    261 https://doi.org/10.1038/nsb1295-1083
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.47100.32 schema:alternateName The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA
    264 The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue
    265 schema:name The Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, 06510, New Haven, Connecticut, USA
    266 The Department of Molecular Biophysics and Biochemistry, The Howard Hughes Medical Institute, Yale University, 260 Whitney Avenue
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...