Plasticity and avalanche behaviour in microfracturing phenomena View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-08

AUTHORS

Stefano Zapperi, Alessandro Vespignani, H. Eugene Stanley

ABSTRACT

Inhomogeneous materials, such as plaster or concrete, subjected to an external elastic stress display sudden movements owing to the formation and propagation of microfractures. Studies of acoustic emission from these systems reveal power-law behaviour1. Similar behaviour in damage propagation has also been seen in acoustic emission resulting from volcanic activity2 and hydrogen precipitation in niobium3. It has been suggested that the underlying fracture dynamics in these systems might display self-organized criticality4, implying that long-ranged correlations between fracture events lead to a scale-free cascade of ‘avalanches’. A hierarchy of avalanche events is also observed in a wide range of other systems, such as the dynamics of random magnets5 and high-temperature superconductors6 in magnetic fields, lung inflation7 and seismic behaviour characterized by the Gutenberg–Richter law8. The applicability of self-organized criticality to microfracturing has been questioned9,10, however, as power laws alone are not unequivocal evidence for it. Here we present a scalar model of microfracturing which generates power-law behaviour in properties related to acoustic emission, and a scale-free hierarchy of avalanches characteristic of self-organized criticality. The geometric structure of the fracture surfaces agrees with that seen experimentally. We find that the critical steady state exhibits plastic macroscopic behaviour, which is commonly observed in real materials. More... »

PAGES

658-660

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6643

VOLUME

388

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/41737

DOI

http://dx.doi.org/10.1038/41737

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001853564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "*Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zapperi", 
        "givenName": "Stefano", 
        "id": "sg:person.01230241530.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230241530.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University", 
          "id": "https://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "\u2020Instituut-Lorentz, University of Leiden, PO Box 9506, 2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vespignani", 
        "givenName": "Alessandro", 
        "id": "sg:person.01270211166.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270211166.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "*Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanley", 
        "givenName": "H. Eugene", 
        "id": "sg:person.0767651144.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767651144.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/368615a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024648101", 
          "https://doi.org/10.1038/368615a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(95)00111-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033839795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039414582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039414582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(90)90161-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040183278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(90)90161-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040183278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1994133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056974086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:019850046013058500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057009844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.2678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.2678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.3923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.3923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.2503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.2503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814144"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-08", 
    "datePublishedReg": "1997-08-01", 
    "description": "Inhomogeneous materials, such as plaster or concrete, subjected to an external elastic stress display sudden movements owing to the formation and propagation of microfractures. Studies of acoustic emission from these systems reveal power-law behaviour1. Similar behaviour in damage propagation has also been seen in acoustic emission resulting from volcanic activity2 and hydrogen precipitation in niobium3. It has been suggested that the underlying fracture dynamics in these systems might display self-organized criticality4, implying that long-ranged correlations between fracture events lead to a scale-free cascade of \u2018avalanches\u2019. A hierarchy of avalanche events is also observed in a wide range of other systems, such as the dynamics of random magnets5 and high-temperature superconductors6 in magnetic fields, lung inflation7 and seismic behaviour characterized by the Gutenberg\u2013Richter law8. The applicability of self-organized criticality to microfracturing has been questioned9,10, however, as power laws alone are not unequivocal evidence for it. Here we present a scalar model of microfracturing which generates power-law behaviour in properties related to acoustic emission, and a scale-free hierarchy of avalanches characteristic of self-organized criticality. The geometric structure of the fracture surfaces agrees with that seen experimentally. We find that the critical steady state exhibits plastic macroscopic behaviour, which is commonly observed in real materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/41737", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6643", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "388"
      }
    ], 
    "name": "Plasticity and avalanche behaviour in microfracturing phenomena", 
    "pagination": "658-660", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08d45074a98f58f8b2f942ebb91e2c3b50af030e89059301d5fa988f2323e521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/41737"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001853564"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/41737", 
      "https://app.dimensions.ai/details/publication/pub.1001853564"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/41737"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/41737'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/41737'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/41737'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/41737'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/41737 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbdb3de908241499380fb8bf6acbf0c81
4 schema:citation sg:pub.10.1038/368615a0
5 https://doi.org/10.1016/0013-7944(90)90161-9
6 https://doi.org/10.1016/0378-4371(95)00111-j
7 https://doi.org/10.1051/jp1:1994133
8 https://doi.org/10.1051/jphyslet:019850046013058500
9 https://doi.org/10.1103/physrevb.39.2678
10 https://doi.org/10.1103/physreve.51.1246
11 https://doi.org/10.1103/physreve.51.1961
12 https://doi.org/10.1103/physrevlett.59.381
13 https://doi.org/10.1103/physrevlett.67.1334
14 https://doi.org/10.1103/physrevlett.67.2239
15 https://doi.org/10.1103/physrevlett.68.612
16 https://doi.org/10.1103/physrevlett.70.3923
17 https://doi.org/10.1103/physrevlett.71.3604
18 https://doi.org/10.1103/physrevlett.72.2306
19 https://doi.org/10.1103/physrevlett.72.2307
20 https://doi.org/10.1103/physrevlett.73.3423
21 https://doi.org/10.1103/physrevlett.74.1206
22 https://doi.org/10.1103/physrevlett.77.2503
23 https://doi.org/10.1103/physrevlett.77.3689
24 schema:datePublished 1997-08
25 schema:datePublishedReg 1997-08-01
26 schema:description Inhomogeneous materials, such as plaster or concrete, subjected to an external elastic stress display sudden movements owing to the formation and propagation of microfractures. Studies of acoustic emission from these systems reveal power-law behaviour1. Similar behaviour in damage propagation has also been seen in acoustic emission resulting from volcanic activity2 and hydrogen precipitation in niobium3. It has been suggested that the underlying fracture dynamics in these systems might display self-organized criticality4, implying that long-ranged correlations between fracture events lead to a scale-free cascade of ‘avalanches’. A hierarchy of avalanche events is also observed in a wide range of other systems, such as the dynamics of random magnets5 and high-temperature superconductors6 in magnetic fields, lung inflation7 and seismic behaviour characterized by the Gutenberg–Richter law8. The applicability of self-organized criticality to microfracturing has been questioned9,10, however, as power laws alone are not unequivocal evidence for it. Here we present a scalar model of microfracturing which generates power-law behaviour in properties related to acoustic emission, and a scale-free hierarchy of avalanches characteristic of self-organized criticality. The geometric structure of the fracture surfaces agrees with that seen experimentally. We find that the critical steady state exhibits plastic macroscopic behaviour, which is commonly observed in real materials.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N9ea1e4916d514d2db3b0e2be94f7f0d1
31 Nf8ac03c67a594fc39f5c771dc00e9dda
32 sg:journal.1018957
33 schema:name Plasticity and avalanche behaviour in microfracturing phenomena
34 schema:pagination 658-660
35 schema:productId N693a076600934cffb61fbbfad3941508
36 N81de5007e15248b1847e52c1268d118f
37 Ncc78badedf5244fe8f9ef1a7464cb515
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001853564
39 https://doi.org/10.1038/41737
40 schema:sdDatePublished 2019-04-11T12:27
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nef02561f88c043a5b985da98ebee35ed
43 schema:url http://www.nature.com/articles/41737
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N49e5079ae4e54372ab8cbb3db45bde9f rdf:first sg:person.01270211166.22
48 rdf:rest Nc58a65da72254016846fec6568312957
49 N693a076600934cffb61fbbfad3941508 schema:name dimensions_id
50 schema:value pub.1001853564
51 rdf:type schema:PropertyValue
52 N81de5007e15248b1847e52c1268d118f schema:name doi
53 schema:value 10.1038/41737
54 rdf:type schema:PropertyValue
55 N9ea1e4916d514d2db3b0e2be94f7f0d1 schema:issueNumber 6643
56 rdf:type schema:PublicationIssue
57 Nbdb3de908241499380fb8bf6acbf0c81 rdf:first sg:person.01230241530.47
58 rdf:rest N49e5079ae4e54372ab8cbb3db45bde9f
59 Nc58a65da72254016846fec6568312957 rdf:first sg:person.0767651144.84
60 rdf:rest rdf:nil
61 Ncc78badedf5244fe8f9ef1a7464cb515 schema:name readcube_id
62 schema:value 08d45074a98f58f8b2f942ebb91e2c3b50af030e89059301d5fa988f2323e521
63 rdf:type schema:PropertyValue
64 Nef02561f88c043a5b985da98ebee35ed schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nf8ac03c67a594fc39f5c771dc00e9dda schema:volumeNumber 388
67 rdf:type schema:PublicationVolume
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1018957 schema:issn 0090-0028
75 1476-4687
76 schema:name Nature
77 rdf:type schema:Periodical
78 sg:person.01230241530.47 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
79 schema:familyName Zapperi
80 schema:givenName Stefano
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230241530.47
82 rdf:type schema:Person
83 sg:person.01270211166.22 schema:affiliation https://www.grid.ac/institutes/grid.5132.5
84 schema:familyName Vespignani
85 schema:givenName Alessandro
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270211166.22
87 rdf:type schema:Person
88 sg:person.0767651144.84 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
89 schema:familyName Stanley
90 schema:givenName H. Eugene
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767651144.84
92 rdf:type schema:Person
93 sg:pub.10.1038/368615a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024648101
94 https://doi.org/10.1038/368615a0
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0013-7944(90)90161-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040183278
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0378-4371(95)00111-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1033839795
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1051/jp1:1994133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974086
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1051/jphyslet:019850046013058500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009844
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.39.2678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549197
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physreve.51.1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717497
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreve.51.1961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039414582
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.59.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796158
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.67.1334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803051
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevlett.67.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803344
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.68.612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804978
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.70.3923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807117
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.71.3604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808063
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.72.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808783
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.72.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808784
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.73.3423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810080
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.74.1206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810338
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.77.2503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813890
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.77.3689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814144
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
135 schema:name *Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.5132.5 schema:alternateName Leiden University
138 schema:name †Instituut-Lorentz, University of Leiden, PO Box 9506, 2300 RA, Leiden, The Netherlands
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...