A reconstruction of the initial conditions of the Universe by optimal mass transportation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-05

AUTHORS

Uriel Frisch, Sabino Matarrese, Roya Mohayaee, Andrei Sobolevski

ABSTRACT

Reconstructing the density fluctuations in the early Universe that evolved into the distribution of galaxies we see today is a challenge to modern cosmology. An accurate reconstruction would allow us to test cosmological models by simulating the evolution starting from the reconstructed primordial state and comparing it to observations. Several reconstruction techniques have been proposed, but they all suffer from lack of uniqueness because the velocities needed to produce a unique reconstruction usually are not known. Here we show that reconstruction can be reduced to a well-determined problem of optimization, and present a specific algorithm that provides excellent agreement when tested against data from N-body simulations. By applying our algorithm to the redshift surveys now under way, we will be able to recover reliably the properties of the primeval fluctuation field of the local Universe, and to determine accurately the peculiar velocities (deviations from the Hubble expansion) and the true positions of many more galaxies than is feasible by any other method. More... »

PAGES

260

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/417260a

DOI

http://dx.doi.org/10.1038/417260a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024026548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12015595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "*CNRS, UMR 6529, Observatoire de la C\u00f4te d'Azur, BP 4229, 06304 Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "Uriel", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Padova", 
          "id": "https://www.grid.ac/institutes/grid.470212.2", 
          "name": [
            "\u2020Dipartimento di Fisica \u201cG. Galilei\u201d and INFN, Sezione di Padova, via Marzolo 8, 35131-Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matarrese", 
        "givenName": "Sabino", 
        "id": "sg:person.0671216116.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671216116.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "*CNRS, UMR 6529, Observatoire de la C\u00f4te d'Azur, BP 4229, 06304 Nice Cedex 4, France", 
            "\u2021Dipartimento di Fisica, Universit\u00e1 Degli Studi di Roma \u201cLa Sapienza\u201d, P. le A. Moro 5, 00185-Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohayaee", 
        "givenName": "Roya", 
        "id": "sg:person.010714113413.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010714113413.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*CNRS, UMR 6529, Observatoire de la C\u00f4te d'Azur, BP 4229, 06304 Nice Cedex 4, France", 
            "\u00a7Department of Physics, M V Lomonossov University, 119899-Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobolevski", 
        "givenName": "Andrei", 
        "id": "sg:person.01045152127.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045152127.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/mnras/285.4.793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002001839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01036611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004066407", 
          "https://doi.org/10.1007/bf01036611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007153925", 
          "https://doi.org/10.1007/bf02392620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008826592", 
          "https://doi.org/10.1007/bf01580579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008826592", 
          "https://doi.org/10.1007/bf01580579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/254.4.729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011483833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016132384", 
          "https://doi.org/10.1007/s002110050002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2000.03261.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016573742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2000.04106.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023296277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00045-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026781880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545882", 
          "https://doi.org/10.1007/978-1-4757-1693-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545882", 
          "https://doi.org/10.1007/978-1-4757-1693-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2002.05611.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036503326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/317182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046684425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/254.2.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052215486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/170728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/171360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/174925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058506215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/176348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/185348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058514857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/185529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058515038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/307040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058614562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-8711.2000.04106.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061930404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/276.1.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083454066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400873173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096968462"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-05", 
    "datePublishedReg": "2002-05-01", 
    "description": "Reconstructing the density fluctuations in the early Universe that evolved into the distribution of galaxies we see today is a challenge to modern cosmology. An accurate reconstruction would allow us to test cosmological models by simulating the evolution starting from the reconstructed primordial state and comparing it to observations. Several reconstruction techniques have been proposed, but they all suffer from lack of uniqueness because the velocities needed to produce a unique reconstruction usually are not known. Here we show that reconstruction can be reduced to a well-determined problem of optimization, and present a specific algorithm that provides excellent agreement when tested against data from N-body simulations. By applying our algorithm to the redshift surveys now under way, we will be able to recover reliably the properties of the primeval fluctuation field of the local Universe, and to determine accurately the peculiar velocities (deviations from the Hubble expansion) and the true positions of many more galaxies than is feasible by any other method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/417260a", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6886", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "417"
      }
    ], 
    "name": "A reconstruction of the initial conditions of the Universe by optimal mass transportation", 
    "pagination": "260", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7277652189f29700351251086841fb73e81e90470922f8ff8c0443355b6a67ea"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12015595"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/417260a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024026548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/417260a", 
      "https://app.dimensions.ai/details/publication/pub.1024026548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53978_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/417260a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/417260a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/417260a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/417260a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/417260a'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/417260a schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N677bb45f68c04705a0cd5ea1acc554f1
4 schema:citation sg:pub.10.1007/978-1-4757-1693-1
5 sg:pub.10.1007/bf01036611
6 sg:pub.10.1007/bf01580579
7 sg:pub.10.1007/bf02392620
8 sg:pub.10.1007/s002110050002
9 https://doi.org/10.1016/s0370-1573(00)00045-4
10 https://doi.org/10.1046/j.1365-8711.2000.03261.x
11 https://doi.org/10.1046/j.1365-8711.2000.04106.x
12 https://doi.org/10.1046/j.1365-8711.2002.05611.x
13 https://doi.org/10.1086/170728
14 https://doi.org/10.1086/171360
15 https://doi.org/10.1086/174925
16 https://doi.org/10.1086/176348
17 https://doi.org/10.1086/185348
18 https://doi.org/10.1086/185529
19 https://doi.org/10.1086/307040
20 https://doi.org/10.1086/317182
21 https://doi.org/10.1093/mnras/254.2.315
22 https://doi.org/10.1093/mnras/254.4.729
23 https://doi.org/10.1093/mnras/276.1.115
24 https://doi.org/10.1093/mnras/285.4.793
25 https://doi.org/10.1103/revmodphys.61.185
26 https://doi.org/10.1111/j.1365-8711.2000.04106.x
27 https://doi.org/10.1515/9781400873173
28 schema:datePublished 2002-05
29 schema:datePublishedReg 2002-05-01
30 schema:description Reconstructing the density fluctuations in the early Universe that evolved into the distribution of galaxies we see today is a challenge to modern cosmology. An accurate reconstruction would allow us to test cosmological models by simulating the evolution starting from the reconstructed primordial state and comparing it to observations. Several reconstruction techniques have been proposed, but they all suffer from lack of uniqueness because the velocities needed to produce a unique reconstruction usually are not known. Here we show that reconstruction can be reduced to a well-determined problem of optimization, and present a specific algorithm that provides excellent agreement when tested against data from N-body simulations. By applying our algorithm to the redshift surveys now under way, we will be able to recover reliably the properties of the primeval fluctuation field of the local Universe, and to determine accurately the peculiar velocities (deviations from the Hubble expansion) and the true positions of many more galaxies than is feasible by any other method.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N11f4788fe9bc47608bc94a104b4f869a
35 Nb36b40871f194d17a40d835ef342af86
36 sg:journal.1018957
37 schema:name A reconstruction of the initial conditions of the Universe by optimal mass transportation
38 schema:pagination 260
39 schema:productId N2476cd35232145a68134ff96b0997dc1
40 N82091ef6539649239e4a06ef2c6f41ec
41 N8495d4ae0a3c41b1b3e036d531453b83
42 Nd4b91e0de25f462784e8e6c792f810f6
43 Ne3b6c424aeef4e7cb7f5e587f2b28842
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024026548
45 https://doi.org/10.1038/417260a
46 schema:sdDatePublished 2019-04-11T12:11
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Naf1cad720278480880a7897716274383
49 schema:url https://www.nature.com/articles/417260a
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N11f4788fe9bc47608bc94a104b4f869a schema:issueNumber 6886
54 rdf:type schema:PublicationIssue
55 N1a519b57f360458ea99f487870d78dfb schema:name *CNRS, UMR 6529, Observatoire de la Côte d'Azur, BP 4229, 06304 Nice Cedex 4, France
56 rdf:type schema:Organization
57 N2476cd35232145a68134ff96b0997dc1 schema:name pubmed_id
58 schema:value 12015595
59 rdf:type schema:PropertyValue
60 N53e4cf0611414ad7bbbc559eafd60888 rdf:first sg:person.010714113413.50
61 rdf:rest Nea92a69511e54c3da134c3ed9d89ea37
62 N57b6cf8eaa5e4932b5385d8b9a2c218f rdf:first sg:person.0671216116.34
63 rdf:rest N53e4cf0611414ad7bbbc559eafd60888
64 N677bb45f68c04705a0cd5ea1acc554f1 rdf:first sg:person.011615073661.47
65 rdf:rest N57b6cf8eaa5e4932b5385d8b9a2c218f
66 N82091ef6539649239e4a06ef2c6f41ec schema:name dimensions_id
67 schema:value pub.1024026548
68 rdf:type schema:PropertyValue
69 N8495d4ae0a3c41b1b3e036d531453b83 schema:name doi
70 schema:value 10.1038/417260a
71 rdf:type schema:PropertyValue
72 Naf1cad720278480880a7897716274383 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nb36b40871f194d17a40d835ef342af86 schema:volumeNumber 417
75 rdf:type schema:PublicationVolume
76 Nd00167d6412e4f8fabe84847a01d0e3c schema:name *CNRS, UMR 6529, Observatoire de la Côte d'Azur, BP 4229, 06304 Nice Cedex 4, France
77 §Department of Physics, M V Lomonossov University, 119899-Moscow, Russia
78 rdf:type schema:Organization
79 Nd4b91e0de25f462784e8e6c792f810f6 schema:name nlm_unique_id
80 schema:value 0410462
81 rdf:type schema:PropertyValue
82 Ne3b6c424aeef4e7cb7f5e587f2b28842 schema:name readcube_id
83 schema:value 7277652189f29700351251086841fb73e81e90470922f8ff8c0443355b6a67ea
84 rdf:type schema:PropertyValue
85 Nea92a69511e54c3da134c3ed9d89ea37 rdf:first sg:person.01045152127.98
86 rdf:rest rdf:nil
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
91 schema:name Astronomical and Space Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1018957 schema:issn 0090-0028
94 1476-4687
95 schema:name Nature
96 rdf:type schema:Periodical
97 sg:person.01045152127.98 schema:affiliation Nd00167d6412e4f8fabe84847a01d0e3c
98 schema:familyName Sobolevski
99 schema:givenName Andrei
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045152127.98
101 rdf:type schema:Person
102 sg:person.010714113413.50 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
103 schema:familyName Mohayaee
104 schema:givenName Roya
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010714113413.50
106 rdf:type schema:Person
107 sg:person.011615073661.47 schema:affiliation N1a519b57f360458ea99f487870d78dfb
108 schema:familyName Frisch
109 schema:givenName Uriel
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
111 rdf:type schema:Person
112 sg:person.0671216116.34 schema:affiliation https://www.grid.ac/institutes/grid.470212.2
113 schema:familyName Matarrese
114 schema:givenName Sabino
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671216116.34
116 rdf:type schema:Person
117 sg:pub.10.1007/978-1-4757-1693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545882
118 https://doi.org/10.1007/978-1-4757-1693-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01036611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004066407
121 https://doi.org/10.1007/bf01036611
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01580579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008826592
124 https://doi.org/10.1007/bf01580579
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02392620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007153925
127 https://doi.org/10.1007/bf02392620
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s002110050002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016132384
130 https://doi.org/10.1007/s002110050002
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0370-1573(00)00045-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026781880
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1046/j.1365-8711.2000.03261.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016573742
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1046/j.1365-8711.2000.04106.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023296277
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1046/j.1365-8711.2002.05611.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036503326
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1086/170728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502018
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1086/171360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502650
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1086/174925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058506215
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1086/176348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507637
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1086/185348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058514857
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1086/185529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058515038
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1086/307040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058614562
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1086/317182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046684425
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/mnras/254.2.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052215486
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/mnras/254.4.729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011483833
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/mnras/276.1.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083454066
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/mnras/285.4.793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002001839
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/revmodphys.61.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839169
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/j.1365-8711.2000.04106.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061930404
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1515/9781400873173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096968462
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.470212.2 schema:alternateName INFN Sezione di Padova
171 schema:name †Dipartimento di Fisica “G. Galilei” and INFN, Sezione di Padova, via Marzolo 8, 35131-Padova, Italy
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
174 schema:name *CNRS, UMR 6529, Observatoire de la Côte d'Azur, BP 4229, 06304 Nice Cedex 4, France
175 ‡Dipartimento di Fisica, Universitá Degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185-Roma, Italy
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...