Origins and estimates of uncertainty in predictions of twenty-first century temperature rise View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-04

AUTHORS

Peter A. Stott, J. A. Kettleborough

ABSTRACT

Predictions of temperature rise over the twenty-first century are necessarily uncertain, both because the sensitivity of the climate system to changing atmospheric greenhouse-gas concentrations, as well as the rate of ocean heat uptake, is poorly quantified1,2 and because future influences on climate—of anthropogenic as well as natural origin—are difficult to predict3. Past observations have been used to help constrain the range of uncertainties in future warming rates, but under the assumption of a particular scenario of future emissions4. Here we investigate the relative importance of the uncertainty in climate response to a particular emissions scenario versus the uncertainty caused by the differences between future emissions scenarios for our estimates of future change. We present probabilistic forecasts of global-mean temperatures for four representative scenarios for future emissions5, obtained with a comprehensive climate model. We find that, in the absence of policies to mitigate climate change, global-mean temperature rise is insensitive to the differences in the emissions scenarios over the next four decades. We also show that in the future, as the signal of climate change emerges further, the predictions will become better constrained. More... »

PAGES

723-726

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/416723a

DOI

http://dx.doi.org/10.1038/416723a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022821020

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11961551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, RG12 2SY, Bracknell, Berkshire, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Met Office, RG12 2SY, Bracknell, Berkshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "Peter A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Space Science and Technology Department, Rutherford Appleton Laboratory, OX11 0QX, Didcot, Oxfordshire, UK", 
          "id": "http://www.grid.ac/institutes/grid.76978.37", 
          "name": [
            "Space Science and Technology Department, Rutherford Appleton Laboratory, OX11 0QX, Didcot, Oxfordshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kettleborough", 
        "givenName": "J. A.", 
        "id": "sg:person.016335101543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016335101543.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047305108", 
          "https://doi.org/10.1007/s00382-003-0313-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824443", 
          "https://doi.org/10.1007/pl00007924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35041539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011328414", 
          "https://doi.org/10.1038/35041539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007895196", 
          "https://doi.org/10.1007/s003820050291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416719a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016686487", 
          "https://doi.org/10.1038/416719a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303772", 
          "https://doi.org/10.1038/35036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310835", 
          "https://doi.org/10.1038/21164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860100", 
          "https://doi.org/10.1007/s003820050185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034790274", 
          "https://doi.org/10.1038/44266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033418695", 
          "https://doi.org/10.1038/42224"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "Predictions of temperature rise over the twenty-first century are necessarily uncertain, both because the sensitivity of the climate system to changing atmospheric greenhouse-gas concentrations, as well as the rate of ocean heat uptake, is poorly quantified1,2 and because future influences on climate\u2014of anthropogenic as well as natural origin\u2014are difficult to predict3. Past observations have been used to help constrain the range of uncertainties in future warming rates, but under the assumption of a particular scenario of future emissions4. Here we investigate the relative importance of the uncertainty in climate response to a particular emissions scenario versus the uncertainty caused by the differences between future emissions scenarios for our estimates of future change. We present probabilistic forecasts of global-mean temperatures for four representative scenarios for future emissions5, obtained with a comprehensive climate model. We find that, in the absence of policies to mitigate climate change, global-mean temperature rise is insensitive to the differences in the emissions scenarios over the next four decades. We also show that in the future, as the signal of climate change emerges further, the predictions will become better constrained.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/416723a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6882", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "416"
      }
    ], 
    "keywords": [
      "emission scenarios", 
      "atmospheric greenhouse-gas concentrations", 
      "climate change", 
      "greenhouse-gas concentrations", 
      "global-mean temperature", 
      "ocean heat uptake", 
      "comprehensive climate models", 
      "future warming rates", 
      "particular emissions scenario", 
      "future emission scenarios", 
      "global-mean temperature rise", 
      "range of uncertainty", 
      "heat uptake", 
      "climate models", 
      "climate system", 
      "climate response", 
      "probabilistic forecasts", 
      "warming rate", 
      "future changes", 
      "estimates of uncertainty", 
      "prediction of temperature", 
      "twenty-first century", 
      "natural origin", 
      "past observations", 
      "future influence", 
      "temperature rise", 
      "relative importance", 
      "uncertainty", 
      "anthropogenic", 
      "climate", 
      "origin", 
      "scenarios", 
      "forecasts", 
      "estimates", 
      "absence of policies", 
      "rise", 
      "temperature", 
      "changes", 
      "prediction", 
      "century", 
      "particular scenario", 
      "representative scenarios", 
      "decades", 
      "concentration", 
      "range", 
      "influence", 
      "model", 
      "rate", 
      "future", 
      "importance", 
      "differences", 
      "assumption", 
      "signals", 
      "system", 
      "response", 
      "uptake", 
      "absence", 
      "sensitivity", 
      "policy", 
      "observations", 
      "future emissions4", 
      "emissions4", 
      "future emissions5", 
      "emissions5", 
      "twenty-first century temperature rise", 
      "century temperature rise"
    ], 
    "name": "Origins and estimates of uncertainty in predictions of twenty-first century temperature rise", 
    "pagination": "723-726", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022821020"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/416723a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11961551"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/416723a", 
      "https://app.dimensions.ai/details/publication/pub.1022821020"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_348.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/416723a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/416723a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/416723a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/416723a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/416723a'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      22 PREDICATES      105 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/416723a schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N39f8965691294fa9bb215774f00aa544
4 schema:citation sg:pub.10.1007/pl00007924
5 sg:pub.10.1007/s00382-003-0313-9
6 sg:pub.10.1007/s003820050009
7 sg:pub.10.1007/s003820050010
8 sg:pub.10.1007/s003820050185
9 sg:pub.10.1007/s003820050291
10 sg:pub.10.1038/21164
11 sg:pub.10.1038/35036559
12 sg:pub.10.1038/35041539
13 sg:pub.10.1038/416719a
14 sg:pub.10.1038/42224
15 sg:pub.10.1038/44266
16 schema:datePublished 2002-04
17 schema:datePublishedReg 2002-04-01
18 schema:description Predictions of temperature rise over the twenty-first century are necessarily uncertain, both because the sensitivity of the climate system to changing atmospheric greenhouse-gas concentrations, as well as the rate of ocean heat uptake, is poorly quantified1,2 and because future influences on climate—of anthropogenic as well as natural origin—are difficult to predict3. Past observations have been used to help constrain the range of uncertainties in future warming rates, but under the assumption of a particular scenario of future emissions4. Here we investigate the relative importance of the uncertainty in climate response to a particular emissions scenario versus the uncertainty caused by the differences between future emissions scenarios for our estimates of future change. We present probabilistic forecasts of global-mean temperatures for four representative scenarios for future emissions5, obtained with a comprehensive climate model. We find that, in the absence of policies to mitigate climate change, global-mean temperature rise is insensitive to the differences in the emissions scenarios over the next four decades. We also show that in the future, as the signal of climate change emerges further, the predictions will become better constrained.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N8db6e12166874bcca4a13da3a62dbb79
23 Ncde21a3576b043d5b0cf09c1b59bee37
24 sg:journal.1018957
25 schema:keywords absence
26 absence of policies
27 anthropogenic
28 assumption
29 atmospheric greenhouse-gas concentrations
30 century
31 century temperature rise
32 changes
33 climate
34 climate change
35 climate models
36 climate response
37 climate system
38 comprehensive climate models
39 concentration
40 decades
41 differences
42 emission scenarios
43 emissions4
44 emissions5
45 estimates
46 estimates of uncertainty
47 forecasts
48 future
49 future changes
50 future emission scenarios
51 future emissions4
52 future emissions5
53 future influence
54 future warming rates
55 global-mean temperature
56 global-mean temperature rise
57 greenhouse-gas concentrations
58 heat uptake
59 importance
60 influence
61 model
62 natural origin
63 observations
64 ocean heat uptake
65 origin
66 particular emissions scenario
67 particular scenario
68 past observations
69 policy
70 prediction
71 prediction of temperature
72 probabilistic forecasts
73 range
74 range of uncertainty
75 rate
76 relative importance
77 representative scenarios
78 response
79 rise
80 scenarios
81 sensitivity
82 signals
83 system
84 temperature
85 temperature rise
86 twenty-first century
87 twenty-first century temperature rise
88 uncertainty
89 uptake
90 warming rate
91 schema:name Origins and estimates of uncertainty in predictions of twenty-first century temperature rise
92 schema:pagination 723-726
93 schema:productId N39517ae4c7ce4203a73b6b4bc16c693b
94 Nc7d69a3b7412421a8a319d3b74c556d8
95 Nfb81880fe552447c81f189efac56ba24
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821020
97 https://doi.org/10.1038/416723a
98 schema:sdDatePublished 2021-11-01T18:05
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N75af44e062074eb4bc2da58fa6ec7b20
101 schema:url https://doi.org/10.1038/416723a
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N39517ae4c7ce4203a73b6b4bc16c693b schema:name dimensions_id
106 schema:value pub.1022821020
107 rdf:type schema:PropertyValue
108 N39f8965691294fa9bb215774f00aa544 rdf:first sg:person.015667030077.29
109 rdf:rest Ne9c03f041e23435c856fb6577e3e97d8
110 N75af44e062074eb4bc2da58fa6ec7b20 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N8db6e12166874bcca4a13da3a62dbb79 schema:volumeNumber 416
113 rdf:type schema:PublicationVolume
114 Nc7d69a3b7412421a8a319d3b74c556d8 schema:name pubmed_id
115 schema:value 11961551
116 rdf:type schema:PropertyValue
117 Ncde21a3576b043d5b0cf09c1b59bee37 schema:issueNumber 6882
118 rdf:type schema:PublicationIssue
119 Ne9c03f041e23435c856fb6577e3e97d8 rdf:first sg:person.016335101543.46
120 rdf:rest rdf:nil
121 Nfb81880fe552447c81f189efac56ba24 schema:name doi
122 schema:value 10.1038/416723a
123 rdf:type schema:PropertyValue
124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
125 schema:name Earth Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
128 schema:name Atmospheric Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0028-0836
131 1476-4687
132 schema:name Nature
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.17100.37
136 schema:familyName Stott
137 schema:givenName Peter A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
139 rdf:type schema:Person
140 sg:person.016335101543.46 schema:affiliation grid-institutes:grid.76978.37
141 schema:familyName Kettleborough
142 schema:givenName J. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016335101543.46
144 rdf:type schema:Person
145 sg:pub.10.1007/pl00007924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824443
146 https://doi.org/10.1007/pl00007924
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00382-003-0313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047305108
149 https://doi.org/10.1007/s00382-003-0313-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
152 https://doi.org/10.1007/s003820050009
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
155 https://doi.org/10.1007/s003820050010
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s003820050185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860100
158 https://doi.org/10.1007/s003820050185
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s003820050291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895196
161 https://doi.org/10.1007/s003820050291
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
164 https://doi.org/10.1038/21164
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
167 https://doi.org/10.1038/35036559
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/35041539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011328414
170 https://doi.org/10.1038/35041539
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/416719a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
173 https://doi.org/10.1038/416719a
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/42224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033418695
176 https://doi.org/10.1038/42224
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/44266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790274
179 https://doi.org/10.1038/44266
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre for Climate Prediction and Research, Met Office, RG12 2SY, Bracknell, Berkshire, UK
182 schema:name Hadley Centre for Climate Prediction and Research, Met Office, RG12 2SY, Bracknell, Berkshire, UK
183 rdf:type schema:Organization
184 grid-institutes:grid.76978.37 schema:alternateName Space Science and Technology Department, Rutherford Appleton Laboratory, OX11 0QX, Didcot, Oxfordshire, UK
185 schema:name Space Science and Technology Department, Rutherford Appleton Laboratory, OX11 0QX, Didcot, Oxfordshire, UK
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...