Constraints on radiative forcing and future climate change from observations and climate model ensembles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-04

AUTHORS

Reto Knutti, Thomas F. Stocker, Fortunat Joos, Gian-Kasper Plattner

ABSTRACT

The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range. More... »

PAGES

719-723

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/416719a

DOI

http://dx.doi.org/10.1038/416719a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016686487

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11961550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knutti", 
        "givenName": "Reto", 
        "id": "sg:person.0725114521.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stocker", 
        "givenName": "Thomas F.", 
        "id": "sg:person.0610516527.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610516527.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joos", 
        "givenName": "Fortunat", 
        "id": "sg:person.01214736104.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plattner", 
        "givenName": "Gian-Kasper", 
        "id": "sg:person.01023014721.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023014721.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820000071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050110772", 
          "https://doi.org/10.1007/s003820000071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310835", 
          "https://doi.org/10.1038/21164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043744883", 
          "https://doi.org/10.1007/s003820100185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050710036", 
          "https://doi.org/10.1038/35075167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824443", 
          "https://doi.org/10.1007/pl00007924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303772", 
          "https://doi.org/10.1038/35036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382039a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029787674", 
          "https://doi.org/10.1038/382039a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model\u00a0of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4\u2009W\u2009m-2 for the 5\u201395 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to \u20131.2\u2009W\u2009m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/416719a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6882", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "416"
      }
    ], 
    "keywords": [
      "climate change", 
      "radiative forcing", 
      "global mean surface temperature increase", 
      "global warming projections", 
      "sensitivity of climate", 
      "climate model ensemble", 
      "greenhouse gas concentrations", 
      "illustrative emission scenarios", 
      "probabilistic climate projections", 
      "future climate change", 
      "total radiative forcing", 
      "surface temperature increase", 
      "cent confidence range", 
      "cent probability", 
      "warming projections", 
      "climate models", 
      "climate projections", 
      "atmospheric warming", 
      "assessment of uncertainty", 
      "ensemble simulations", 
      "emission scenarios", 
      "model ensemble", 
      "Intergovernmental Panel", 
      "large uncertainties", 
      "model response", 
      "forcing", 
      "past observations", 
      "warming", 
      "temperature increase", 
      "confidence range", 
      "Monte Carlo approach", 
      "uncertainty", 
      "probability density function", 
      "Carlo approach", 
      "input parameters", 
      "aerosols", 
      "climate", 
      "key variables", 
      "projections", 
      "atmosphere", 
      "simulations1", 
      "changes", 
      "ensemble", 
      "density function", 
      "range", 
      "expert judgment", 
      "model", 
      "scenarios", 
      "constraints", 
      "concentration", 
      "simulations", 
      "assessment", 
      "increase", 
      "probability", 
      "parameters", 
      "account", 
      "variables", 
      "effect", 
      "response", 
      "sensitivity", 
      "complexity", 
      "reduced complexity", 
      "approach", 
      "number", 
      "panel", 
      "function", 
      "judgments", 
      "observations", 
      "global warming simulations1", 
      "warming simulations1", 
      "realistic model responses", 
      "present-day total radiative forcing", 
      "per cent confidence range"
    ], 
    "name": "Constraints on radiative forcing and future climate change from observations and climate model ensembles", 
    "pagination": "719-723", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016686487"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/416719a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11961550"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/416719a", 
      "https://app.dimensions.ai/details/publication/pub.1016686487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_349.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/416719a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/416719a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/416719a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/416719a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/416719a'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      107 URIs      92 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/416719a schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nf1445c7b0d8343fc857f712ec841512f
4 schema:citation sg:pub.10.1007/pl00007924
5 sg:pub.10.1007/s003820000071
6 sg:pub.10.1007/s003820100185
7 sg:pub.10.1038/21164
8 sg:pub.10.1038/35036559
9 sg:pub.10.1038/35075167
10 sg:pub.10.1038/382039a0
11 schema:datePublished 2002-04
12 schema:datePublishedReg 2002-04-01
13 schema:description The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nc69ef275881d4871b03a86e45e47f6a8
18 Nf8b49164c6b54c8596339db9d94688c3
19 sg:journal.1018957
20 schema:keywords Carlo approach
21 Intergovernmental Panel
22 Monte Carlo approach
23 account
24 aerosols
25 approach
26 assessment
27 assessment of uncertainty
28 atmosphere
29 atmospheric warming
30 cent confidence range
31 cent probability
32 changes
33 climate
34 climate change
35 climate model ensemble
36 climate models
37 climate projections
38 complexity
39 concentration
40 confidence range
41 constraints
42 density function
43 effect
44 emission scenarios
45 ensemble
46 ensemble simulations
47 expert judgment
48 forcing
49 function
50 future climate change
51 global mean surface temperature increase
52 global warming projections
53 global warming simulations1
54 greenhouse gas concentrations
55 illustrative emission scenarios
56 increase
57 input parameters
58 judgments
59 key variables
60 large uncertainties
61 model
62 model ensemble
63 model response
64 number
65 observations
66 panel
67 parameters
68 past observations
69 per cent confidence range
70 present-day total radiative forcing
71 probabilistic climate projections
72 probability
73 probability density function
74 projections
75 radiative forcing
76 range
77 realistic model responses
78 reduced complexity
79 response
80 scenarios
81 sensitivity
82 sensitivity of climate
83 simulations
84 simulations1
85 surface temperature increase
86 temperature increase
87 total radiative forcing
88 uncertainty
89 variables
90 warming
91 warming projections
92 warming simulations1
93 schema:name Constraints on radiative forcing and future climate change from observations and climate model ensembles
94 schema:pagination 719-723
95 schema:productId N1e1f2bf90f234f48bfd45cebada08392
96 N661b7bd137f14609a99cd8d59ed5ecab
97 Naf2321eae80e4a2e9fe058c51c574f20
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
99 https://doi.org/10.1038/416719a
100 schema:sdDatePublished 2022-01-01T18:11
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N34ecc5a10cbc445b91f7d1b51e1c4506
103 schema:url https://doi.org/10.1038/416719a
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N183fa97d77794afe83173a78ab35afd2 rdf:first sg:person.01214736104.98
108 rdf:rest Ne21c77d190534827836cbaa6e9adcfd9
109 N1e1f2bf90f234f48bfd45cebada08392 schema:name pubmed_id
110 schema:value 11961550
111 rdf:type schema:PropertyValue
112 N34ecc5a10cbc445b91f7d1b51e1c4506 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N661b7bd137f14609a99cd8d59ed5ecab schema:name doi
115 schema:value 10.1038/416719a
116 rdf:type schema:PropertyValue
117 Naf2321eae80e4a2e9fe058c51c574f20 schema:name dimensions_id
118 schema:value pub.1016686487
119 rdf:type schema:PropertyValue
120 Nc69ef275881d4871b03a86e45e47f6a8 schema:issueNumber 6882
121 rdf:type schema:PublicationIssue
122 Ne21c77d190534827836cbaa6e9adcfd9 rdf:first sg:person.01023014721.94
123 rdf:rest rdf:nil
124 Nf1445c7b0d8343fc857f712ec841512f rdf:first sg:person.0725114521.94
125 rdf:rest Nfc8a4ef797f741fcbe10d93752785632
126 Nf8b49164c6b54c8596339db9d94688c3 schema:volumeNumber 416
127 rdf:type schema:PublicationVolume
128 Nfc8a4ef797f741fcbe10d93752785632 rdf:first sg:person.0610516527.07
129 rdf:rest N183fa97d77794afe83173a78ab35afd2
130 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
131 schema:name Earth Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
134 schema:name Atmospheric Sciences
135 rdf:type schema:DefinedTerm
136 sg:journal.1018957 schema:issn 0028-0836
137 1476-4687
138 schema:name Nature
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.01023014721.94 schema:affiliation grid-institutes:grid.5734.5
142 schema:familyName Plattner
143 schema:givenName Gian-Kasper
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023014721.94
145 rdf:type schema:Person
146 sg:person.01214736104.98 schema:affiliation grid-institutes:grid.5734.5
147 schema:familyName Joos
148 schema:givenName Fortunat
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98
150 rdf:type schema:Person
151 sg:person.0610516527.07 schema:affiliation grid-institutes:grid.5734.5
152 schema:familyName Stocker
153 schema:givenName Thomas F.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610516527.07
155 rdf:type schema:Person
156 sg:person.0725114521.94 schema:affiliation grid-institutes:grid.5734.5
157 schema:familyName Knutti
158 schema:givenName Reto
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94
160 rdf:type schema:Person
161 sg:pub.10.1007/pl00007924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824443
162 https://doi.org/10.1007/pl00007924
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s003820000071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050110772
165 https://doi.org/10.1007/s003820000071
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s003820100185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043744883
168 https://doi.org/10.1007/s003820100185
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
171 https://doi.org/10.1038/21164
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
174 https://doi.org/10.1038/35036559
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/35075167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710036
177 https://doi.org/10.1038/35075167
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/382039a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029787674
180 https://doi.org/10.1038/382039a0
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.5734.5 schema:alternateName Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland
183 schema:name Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...