Ontology type: schema:ScholarlyArticle
2002-04
AUTHORSReto Knutti, Thomas F. Stocker, Fortunat Joos, Gian-Kasper Plattner
ABSTRACTThe assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range. More... »
PAGES719-723
http://scigraph.springernature.com/pub.10.1038/416719a
DOIhttp://dx.doi.org/10.1038/416719a
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016686487
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/11961550
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5734.5",
"name": [
"Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
],
"type": "Organization"
},
"familyName": "Knutti",
"givenName": "Reto",
"id": "sg:person.0725114521.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5734.5",
"name": [
"Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
],
"type": "Organization"
},
"familyName": "Stocker",
"givenName": "Thomas F.",
"id": "sg:person.0610516527.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610516527.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5734.5",
"name": [
"Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
],
"type": "Organization"
},
"familyName": "Joos",
"givenName": "Fortunat",
"id": "sg:person.01214736104.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5734.5",
"name": [
"Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
],
"type": "Organization"
},
"familyName": "Plattner",
"givenName": "Gian-Kasper",
"id": "sg:person.01023014721.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023014721.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s003820000071",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050110772",
"https://doi.org/10.1007/s003820000071"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820100185",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043744883",
"https://doi.org/10.1007/s003820100185"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/21164",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039310835",
"https://doi.org/10.1038/21164"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35036559",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016303772",
"https://doi.org/10.1038/35036559"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/382039a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029787674",
"https://doi.org/10.1038/382039a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00007924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044824443",
"https://doi.org/10.1007/pl00007924"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35075167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050710036",
"https://doi.org/10.1038/35075167"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-04",
"datePublishedReg": "2002-04-01",
"description": "The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model\u00a0of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4\u2009W\u2009m-2 for the 5\u201395 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to \u20131.2\u2009W\u2009m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.",
"genre": "article",
"id": "sg:pub.10.1038/416719a",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6882",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "416"
}
],
"keywords": [
"climate change",
"radiative forcing",
"global mean surface temperature increase",
"global warming projections",
"sensitivity of climate",
"climate model ensemble",
"greenhouse gas concentrations",
"illustrative emission scenarios",
"probabilistic climate projections",
"future climate change",
"total radiative forcing",
"surface temperature increase",
"cent confidence range",
"cent probability",
"warming projections",
"climate models",
"climate projections",
"atmospheric warming",
"assessment of uncertainty",
"ensemble simulations",
"emission scenarios",
"model ensemble",
"Intergovernmental Panel",
"large uncertainties",
"model response",
"forcing",
"past observations",
"warming",
"temperature increase",
"confidence range",
"Monte Carlo approach",
"uncertainty",
"probability density function",
"Carlo approach",
"input parameters",
"aerosols",
"climate",
"key variables",
"projections",
"atmosphere",
"simulations1",
"changes",
"ensemble",
"density function",
"range",
"expert judgment",
"model",
"scenarios",
"constraints",
"concentration",
"simulations",
"assessment",
"increase",
"probability",
"parameters",
"account",
"variables",
"effect",
"response",
"sensitivity",
"complexity",
"reduced complexity",
"approach",
"number",
"panel",
"function",
"judgments",
"observations"
],
"name": "Constraints on radiative forcing and future climate change from observations and climate model ensembles",
"pagination": "719-723",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016686487"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/416719a"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"11961550"
]
}
],
"sameAs": [
"https://doi.org/10.1038/416719a",
"https://app.dimensions.ai/details/publication/pub.1016686487"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_350.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/416719a"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/416719a'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/416719a'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/416719a'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/416719a'
This table displays all metadata directly associated to this object as RDF triples.
179 TRIPLES
22 PREDICATES
102 URIs
87 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/416719a | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | N18386445bc4d4027b1fd749a841b5828 |
4 | ″ | schema:citation | sg:pub.10.1007/pl00007924 |
5 | ″ | ″ | sg:pub.10.1007/s003820000071 |
6 | ″ | ″ | sg:pub.10.1007/s003820100185 |
7 | ″ | ″ | sg:pub.10.1038/21164 |
8 | ″ | ″ | sg:pub.10.1038/35036559 |
9 | ″ | ″ | sg:pub.10.1038/35075167 |
10 | ″ | ″ | sg:pub.10.1038/382039a0 |
11 | ″ | schema:datePublished | 2002-04 |
12 | ″ | schema:datePublishedReg | 2002-04-01 |
13 | ″ | schema:description | The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | Nd6a48f6cc5e0482ea05d5f868e1cf16f |
18 | ″ | ″ | Nd72753f24b964076a476fa81100dfe79 |
19 | ″ | ″ | sg:journal.1018957 |
20 | ″ | schema:keywords | Carlo approach |
21 | ″ | ″ | Intergovernmental Panel |
22 | ″ | ″ | Monte Carlo approach |
23 | ″ | ″ | account |
24 | ″ | ″ | aerosols |
25 | ″ | ″ | approach |
26 | ″ | ″ | assessment |
27 | ″ | ″ | assessment of uncertainty |
28 | ″ | ″ | atmosphere |
29 | ″ | ″ | atmospheric warming |
30 | ″ | ″ | cent confidence range |
31 | ″ | ″ | cent probability |
32 | ″ | ″ | changes |
33 | ″ | ″ | climate |
34 | ″ | ″ | climate change |
35 | ″ | ″ | climate model ensemble |
36 | ″ | ″ | climate models |
37 | ″ | ″ | climate projections |
38 | ″ | ″ | complexity |
39 | ″ | ″ | concentration |
40 | ″ | ″ | confidence range |
41 | ″ | ″ | constraints |
42 | ″ | ″ | density function |
43 | ″ | ″ | effect |
44 | ″ | ″ | emission scenarios |
45 | ″ | ″ | ensemble |
46 | ″ | ″ | ensemble simulations |
47 | ″ | ″ | expert judgment |
48 | ″ | ″ | forcing |
49 | ″ | ″ | function |
50 | ″ | ″ | future climate change |
51 | ″ | ″ | global mean surface temperature increase |
52 | ″ | ″ | global warming projections |
53 | ″ | ″ | greenhouse gas concentrations |
54 | ″ | ″ | illustrative emission scenarios |
55 | ″ | ″ | increase |
56 | ″ | ″ | input parameters |
57 | ″ | ″ | judgments |
58 | ″ | ″ | key variables |
59 | ″ | ″ | large uncertainties |
60 | ″ | ″ | model |
61 | ″ | ″ | model ensemble |
62 | ″ | ″ | model response |
63 | ″ | ″ | number |
64 | ″ | ″ | observations |
65 | ″ | ″ | panel |
66 | ″ | ″ | parameters |
67 | ″ | ″ | past observations |
68 | ″ | ″ | probabilistic climate projections |
69 | ″ | ″ | probability |
70 | ″ | ″ | probability density function |
71 | ″ | ″ | projections |
72 | ″ | ″ | radiative forcing |
73 | ″ | ″ | range |
74 | ″ | ″ | reduced complexity |
75 | ″ | ″ | response |
76 | ″ | ″ | scenarios |
77 | ″ | ″ | sensitivity |
78 | ″ | ″ | sensitivity of climate |
79 | ″ | ″ | simulations |
80 | ″ | ″ | simulations1 |
81 | ″ | ″ | surface temperature increase |
82 | ″ | ″ | temperature increase |
83 | ″ | ″ | total radiative forcing |
84 | ″ | ″ | uncertainty |
85 | ″ | ″ | variables |
86 | ″ | ″ | warming |
87 | ″ | ″ | warming projections |
88 | ″ | schema:name | Constraints on radiative forcing and future climate change from observations and climate model ensembles |
89 | ″ | schema:pagination | 719-723 |
90 | ″ | schema:productId | N100caf46b62e4dc0b43173a5495138fe |
91 | ″ | ″ | N78fd70d39f0143438ea78d33bffa4a27 |
92 | ″ | ″ | N879225f3c742431897e1acafb1938316 |
93 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016686487 |
94 | ″ | ″ | https://doi.org/10.1038/416719a |
95 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
96 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
97 | ″ | schema:sdPublisher | N595a6d3cbf7541d78d1f311273ded90f |
98 | ″ | schema:url | https://doi.org/10.1038/416719a |
99 | ″ | sgo:license | sg:explorer/license/ |
100 | ″ | sgo:sdDataset | articles |
101 | ″ | rdf:type | schema:ScholarlyArticle |
102 | N100caf46b62e4dc0b43173a5495138fe | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1016686487 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N18386445bc4d4027b1fd749a841b5828 | rdf:first | sg:person.0725114521.94 |
106 | ″ | rdf:rest | N5c2d80cfdb974837814db37bcca45ed2 |
107 | N595a6d3cbf7541d78d1f311273ded90f | schema:name | Springer Nature - SN SciGraph project |
108 | ″ | rdf:type | schema:Organization |
109 | N5c2d80cfdb974837814db37bcca45ed2 | rdf:first | sg:person.0610516527.07 |
110 | ″ | rdf:rest | Nd3d65b92d1d541eda973f06da7417d42 |
111 | N78fd70d39f0143438ea78d33bffa4a27 | schema:name | doi |
112 | ″ | schema:value | 10.1038/416719a |
113 | ″ | rdf:type | schema:PropertyValue |
114 | N879225f3c742431897e1acafb1938316 | schema:name | pubmed_id |
115 | ″ | schema:value | 11961550 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | Nd3d65b92d1d541eda973f06da7417d42 | rdf:first | sg:person.01214736104.98 |
118 | ″ | rdf:rest | Nffec3c74260d4166b948bba5325074b2 |
119 | Nd6a48f6cc5e0482ea05d5f868e1cf16f | schema:issueNumber | 6882 |
120 | ″ | rdf:type | schema:PublicationIssue |
121 | Nd72753f24b964076a476fa81100dfe79 | schema:volumeNumber | 416 |
122 | ″ | rdf:type | schema:PublicationVolume |
123 | Nffec3c74260d4166b948bba5325074b2 | rdf:first | sg:person.01023014721.94 |
124 | ″ | rdf:rest | rdf:nil |
125 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Earth Sciences |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Atmospheric Sciences |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | sg:journal.1018957 | schema:issn | 0028-0836 |
132 | ″ | ″ | 1476-4687 |
133 | ″ | schema:name | Nature |
134 | ″ | schema:publisher | Springer Nature |
135 | ″ | rdf:type | schema:Periodical |
136 | sg:person.01023014721.94 | schema:affiliation | grid-institutes:grid.5734.5 |
137 | ″ | schema:familyName | Plattner |
138 | ″ | schema:givenName | Gian-Kasper |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023014721.94 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.01214736104.98 | schema:affiliation | grid-institutes:grid.5734.5 |
142 | ″ | schema:familyName | Joos |
143 | ″ | schema:givenName | Fortunat |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.0610516527.07 | schema:affiliation | grid-institutes:grid.5734.5 |
147 | ″ | schema:familyName | Stocker |
148 | ″ | schema:givenName | Thomas F. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610516527.07 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.0725114521.94 | schema:affiliation | grid-institutes:grid.5734.5 |
152 | ″ | schema:familyName | Knutti |
153 | ″ | schema:givenName | Reto |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94 |
155 | ″ | rdf:type | schema:Person |
156 | sg:pub.10.1007/pl00007924 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044824443 |
157 | ″ | ″ | https://doi.org/10.1007/pl00007924 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/s003820000071 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050110772 |
160 | ″ | ″ | https://doi.org/10.1007/s003820000071 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | sg:pub.10.1007/s003820100185 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043744883 |
163 | ″ | ″ | https://doi.org/10.1007/s003820100185 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | sg:pub.10.1038/21164 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039310835 |
166 | ″ | ″ | https://doi.org/10.1038/21164 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1038/35036559 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016303772 |
169 | ″ | ″ | https://doi.org/10.1038/35036559 |
170 | ″ | rdf:type | schema:CreativeWork |
171 | sg:pub.10.1038/35075167 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050710036 |
172 | ″ | ″ | https://doi.org/10.1038/35075167 |
173 | ″ | rdf:type | schema:CreativeWork |
174 | sg:pub.10.1038/382039a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029787674 |
175 | ″ | ″ | https://doi.org/10.1038/382039a0 |
176 | ″ | rdf:type | schema:CreativeWork |
177 | grid-institutes:grid.5734.5 | schema:alternateName | Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland |
178 | ″ | schema:name | Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland |
179 | ″ | rdf:type | schema:Organization |