Constraints on radiative forcing and future climate change from observations and climate model ensembles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-04

AUTHORS

Reto Knutti, Thomas F. Stocker, Fortunat Joos, Gian-Kasper Plattner

ABSTRACT

The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range. More... »

PAGES

719-723

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/416719a

DOI

http://dx.doi.org/10.1038/416719a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016686487

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11961550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knutti", 
        "givenName": "Reto", 
        "id": "sg:person.0725114521.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stocker", 
        "givenName": "Thomas F.", 
        "id": "sg:person.0610516527.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610516527.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joos", 
        "givenName": "Fortunat", 
        "id": "sg:person.01214736104.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plattner", 
        "givenName": "Gian-Kasper", 
        "id": "sg:person.01023014721.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023014721.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820000071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050110772", 
          "https://doi.org/10.1007/s003820000071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043744883", 
          "https://doi.org/10.1007/s003820100185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310835", 
          "https://doi.org/10.1038/21164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303772", 
          "https://doi.org/10.1038/35036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382039a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029787674", 
          "https://doi.org/10.1038/382039a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824443", 
          "https://doi.org/10.1007/pl00007924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050710036", 
          "https://doi.org/10.1038/35075167"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model\u00a0of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4\u2009W\u2009m-2 for the 5\u201395 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to \u20131.2\u2009W\u2009m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/416719a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6882", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "416"
      }
    ], 
    "keywords": [
      "climate change", 
      "radiative forcing", 
      "global mean surface temperature increase", 
      "global warming projections", 
      "sensitivity of climate", 
      "climate model ensemble", 
      "greenhouse gas concentrations", 
      "illustrative emission scenarios", 
      "probabilistic climate projections", 
      "future climate change", 
      "total radiative forcing", 
      "surface temperature increase", 
      "cent confidence range", 
      "cent probability", 
      "warming projections", 
      "climate models", 
      "climate projections", 
      "atmospheric warming", 
      "assessment of uncertainty", 
      "ensemble simulations", 
      "emission scenarios", 
      "model ensemble", 
      "Intergovernmental Panel", 
      "large uncertainties", 
      "model response", 
      "forcing", 
      "past observations", 
      "warming", 
      "temperature increase", 
      "confidence range", 
      "Monte Carlo approach", 
      "uncertainty", 
      "probability density function", 
      "Carlo approach", 
      "input parameters", 
      "aerosols", 
      "climate", 
      "key variables", 
      "projections", 
      "atmosphere", 
      "simulations1", 
      "changes", 
      "ensemble", 
      "density function", 
      "range", 
      "expert judgment", 
      "model", 
      "scenarios", 
      "constraints", 
      "concentration", 
      "simulations", 
      "assessment", 
      "increase", 
      "probability", 
      "parameters", 
      "account", 
      "variables", 
      "effect", 
      "response", 
      "sensitivity", 
      "complexity", 
      "reduced complexity", 
      "approach", 
      "number", 
      "panel", 
      "function", 
      "judgments", 
      "observations"
    ], 
    "name": "Constraints on radiative forcing and future climate change from observations and climate model ensembles", 
    "pagination": "719-723", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016686487"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/416719a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11961550"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/416719a", 
      "https://app.dimensions.ai/details/publication/pub.1016686487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_350.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/416719a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/416719a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/416719a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/416719a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/416719a'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      102 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/416719a schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N18386445bc4d4027b1fd749a841b5828
4 schema:citation sg:pub.10.1007/pl00007924
5 sg:pub.10.1007/s003820000071
6 sg:pub.10.1007/s003820100185
7 sg:pub.10.1038/21164
8 sg:pub.10.1038/35036559
9 sg:pub.10.1038/35075167
10 sg:pub.10.1038/382039a0
11 schema:datePublished 2002-04
12 schema:datePublishedReg 2002-04-01
13 schema:description The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations1. Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nd6a48f6cc5e0482ea05d5f868e1cf16f
18 Nd72753f24b964076a476fa81100dfe79
19 sg:journal.1018957
20 schema:keywords Carlo approach
21 Intergovernmental Panel
22 Monte Carlo approach
23 account
24 aerosols
25 approach
26 assessment
27 assessment of uncertainty
28 atmosphere
29 atmospheric warming
30 cent confidence range
31 cent probability
32 changes
33 climate
34 climate change
35 climate model ensemble
36 climate models
37 climate projections
38 complexity
39 concentration
40 confidence range
41 constraints
42 density function
43 effect
44 emission scenarios
45 ensemble
46 ensemble simulations
47 expert judgment
48 forcing
49 function
50 future climate change
51 global mean surface temperature increase
52 global warming projections
53 greenhouse gas concentrations
54 illustrative emission scenarios
55 increase
56 input parameters
57 judgments
58 key variables
59 large uncertainties
60 model
61 model ensemble
62 model response
63 number
64 observations
65 panel
66 parameters
67 past observations
68 probabilistic climate projections
69 probability
70 probability density function
71 projections
72 radiative forcing
73 range
74 reduced complexity
75 response
76 scenarios
77 sensitivity
78 sensitivity of climate
79 simulations
80 simulations1
81 surface temperature increase
82 temperature increase
83 total radiative forcing
84 uncertainty
85 variables
86 warming
87 warming projections
88 schema:name Constraints on radiative forcing and future climate change from observations and climate model ensembles
89 schema:pagination 719-723
90 schema:productId N100caf46b62e4dc0b43173a5495138fe
91 N78fd70d39f0143438ea78d33bffa4a27
92 N879225f3c742431897e1acafb1938316
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
94 https://doi.org/10.1038/416719a
95 schema:sdDatePublished 2022-05-20T07:22
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N595a6d3cbf7541d78d1f311273ded90f
98 schema:url https://doi.org/10.1038/416719a
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N100caf46b62e4dc0b43173a5495138fe schema:name dimensions_id
103 schema:value pub.1016686487
104 rdf:type schema:PropertyValue
105 N18386445bc4d4027b1fd749a841b5828 rdf:first sg:person.0725114521.94
106 rdf:rest N5c2d80cfdb974837814db37bcca45ed2
107 N595a6d3cbf7541d78d1f311273ded90f schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N5c2d80cfdb974837814db37bcca45ed2 rdf:first sg:person.0610516527.07
110 rdf:rest Nd3d65b92d1d541eda973f06da7417d42
111 N78fd70d39f0143438ea78d33bffa4a27 schema:name doi
112 schema:value 10.1038/416719a
113 rdf:type schema:PropertyValue
114 N879225f3c742431897e1acafb1938316 schema:name pubmed_id
115 schema:value 11961550
116 rdf:type schema:PropertyValue
117 Nd3d65b92d1d541eda973f06da7417d42 rdf:first sg:person.01214736104.98
118 rdf:rest Nffec3c74260d4166b948bba5325074b2
119 Nd6a48f6cc5e0482ea05d5f868e1cf16f schema:issueNumber 6882
120 rdf:type schema:PublicationIssue
121 Nd72753f24b964076a476fa81100dfe79 schema:volumeNumber 416
122 rdf:type schema:PublicationVolume
123 Nffec3c74260d4166b948bba5325074b2 rdf:first sg:person.01023014721.94
124 rdf:rest rdf:nil
125 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
126 schema:name Earth Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atmospheric Sciences
130 rdf:type schema:DefinedTerm
131 sg:journal.1018957 schema:issn 0028-0836
132 1476-4687
133 schema:name Nature
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01023014721.94 schema:affiliation grid-institutes:grid.5734.5
137 schema:familyName Plattner
138 schema:givenName Gian-Kasper
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023014721.94
140 rdf:type schema:Person
141 sg:person.01214736104.98 schema:affiliation grid-institutes:grid.5734.5
142 schema:familyName Joos
143 schema:givenName Fortunat
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98
145 rdf:type schema:Person
146 sg:person.0610516527.07 schema:affiliation grid-institutes:grid.5734.5
147 schema:familyName Stocker
148 schema:givenName Thomas F.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610516527.07
150 rdf:type schema:Person
151 sg:person.0725114521.94 schema:affiliation grid-institutes:grid.5734.5
152 schema:familyName Knutti
153 schema:givenName Reto
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94
155 rdf:type schema:Person
156 sg:pub.10.1007/pl00007924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824443
157 https://doi.org/10.1007/pl00007924
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s003820000071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050110772
160 https://doi.org/10.1007/s003820000071
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s003820100185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043744883
163 https://doi.org/10.1007/s003820100185
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
166 https://doi.org/10.1038/21164
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
169 https://doi.org/10.1038/35036559
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/35075167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710036
172 https://doi.org/10.1038/35075167
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/382039a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029787674
175 https://doi.org/10.1038/382039a0
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.5734.5 schema:alternateName Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland
178 schema:name Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstr. 5, 3012, Bern, Switzerland
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...