Extraction of a weak climatic signal by an ecosystem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-04

AUTHORS

Arnold H. Taylor, J. Icarus Allen, Paul A. Clark

ABSTRACT

The complexity of ecosystems can cause subtle1 and chaotic responses to changes in external forcing2. Although ecosystems may not normally behave chaotically3, sensitivity to external influences associated with nonlinearity can lead to amplification of climatic signals. Strong correlations between an El Niño index and rainfall and maize yield in Zimbabwe have been demonstrated4; the correlation with maize yield was stronger than that with rainfall. A second example is the 100,000-year ice-age cycle, which may arise from a weak cycle in radiation through its influence on the concentration of atmospheric CO2 (ref. 5). Such integration of a weak climatic signal has yet to be demonstrated in a realistic theoretical system. Here we use a particular climatic phenomenon—the observed association between plankton populations around the UK and the position of the Gulf Stream6,7—as a probe to demonstrate how a detailed marine ecosystem model extracts a weak signal that is spread across different meteorological variables. Biological systems may therefore respond to climatic signals other than those that dominate the driving variables. More... »

PAGES

629-632

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/416629a

DOI

http://dx.doi.org/10.1038/416629a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025434538

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11948350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fresh Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oceans and Seas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plankton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seawater", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Movements", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK", 
          "id": "http://www.grid.ac/institutes/grid.11201.33", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK", 
            "Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Arnold H.", 
        "id": "sg:person.015232316321.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232316321.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK", 
          "id": "http://www.grid.ac/institutes/grid.22319.3b", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "J. Icarus", 
        "id": "sg:person.01221320530.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221320530.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clark", 
        "givenName": "Paul A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/378139a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016265284", 
          "https://doi.org/10.1038/378139a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00392495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035379750", 
          "https://doi.org/10.1007/bf00392495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015156954", 
          "https://doi.org/10.1038/35074099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370204a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026802797", 
          "https://doi.org/10.1038/370204a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46416-4_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012267704", 
          "https://doi.org/10.1007/978-3-642-46416-4_16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "The complexity of ecosystems can cause subtle1 and chaotic responses to changes in external forcing2. Although ecosystems may not normally behave chaotically3, sensitivity to external influences associated with nonlinearity can lead to amplification of climatic signals. Strong correlations between an El Ni\u00f1o index and rainfall and maize yield in Zimbabwe have been demonstrated4; the correlation with maize yield was stronger than that with rainfall. A second example is the 100,000-year ice-age cycle, which may arise from a weak cycle in radiation through its influence on the concentration of atmospheric CO2 (ref. 5). Such integration of a weak climatic signal has yet to be demonstrated in a realistic theoretical system. Here we use a particular climatic phenomenon\u2014the observed association between plankton populations around the UK and the position of the Gulf Stream6,7\u2014as a probe to demonstrate how a detailed marine ecosystem model extracts a weak signal that is spread across different meteorological variables. Biological systems may therefore respond to climatic signals other than those that dominate the driving variables.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/416629a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6881", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "416"
      }
    ], 
    "keywords": [
      "marine ecosystem model", 
      "complexity of ecosystems", 
      "plankton populations", 
      "ecosystem model", 
      "ecosystems", 
      "climatic signal", 
      "atmospheric CO2", 
      "biological systems", 
      "driving variables", 
      "maize yield", 
      "climatic phenomena", 
      "ice-age cycles", 
      "signals", 
      "cycle", 
      "amplification", 
      "rainfall", 
      "yield", 
      "Gulf", 
      "probe", 
      "weak signals", 
      "population", 
      "demonstrated4", 
      "response", 
      "strong correlation", 
      "El Ni\u00f1o index", 
      "CO2", 
      "changes", 
      "second example", 
      "such integration", 
      "association", 
      "observed associations", 
      "correlation", 
      "system", 
      "Ni\u00f1o Index", 
      "concentration", 
      "radiation", 
      "sensitivity", 
      "influence", 
      "position", 
      "complexity", 
      "integration", 
      "Zimbabwe", 
      "external influences", 
      "example", 
      "phenomenon", 
      "meteorological variables", 
      "model", 
      "different meteorological variables", 
      "extraction", 
      "index", 
      "variables", 
      "weak cycles", 
      "theoretical system", 
      "UK", 
      "chaotic responses", 
      "nonlinearity", 
      "subtle1", 
      "external forcing2", 
      "forcing2", 
      "chaotically3", 
      "weak climatic signal", 
      "realistic theoretical system", 
      "particular climatic phenomenon", 
      "detailed marine ecosystem model"
    ], 
    "name": "Extraction of a weak climatic signal by an ecosystem", 
    "pagination": "629-632", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025434538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/416629a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11948350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/416629a", 
      "https://app.dimensions.ai/details/publication/pub.1025434538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_357.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/416629a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/416629a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/416629a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/416629a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/416629a'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      109 URIs      96 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/416629a schema:about N104a32f916a241f49cfa215f5c8b1e9c
2 N23496740a0c1453e918cd430ab53bd1f
3 N2bc19c2f5efb4323be90bec16e51ef34
4 N2f4a5f2015824c5eb95b5a11e09f3cf1
5 N6584c43db4ae48e9a0a5b85341453608
6 N882e7ece45d14c3d8c73750f3d704f0e
7 N8df36431319e4b82836692207ea414ad
8 N9923cf7255824f2db2440896f25132c8
9 Nb6fd1cc684334aa8a967620afb07eb09
10 Nc41251f1a57144c589bef8cba57f4c87
11 Ncd248f7ff3ab479dbeb792b59e4babb2
12 Nd10a5ad3f45d4469a4085659a6499ed8
13 Ne0268d95bc624d25ab84a24d3649f8af
14 anzsrc-for:06
15 anzsrc-for:0602
16 schema:author Nf3fcea15f7d44e48a2e3a7336969a3dc
17 schema:citation sg:pub.10.1007/978-3-642-46416-4_16
18 sg:pub.10.1007/bf00392495
19 sg:pub.10.1038/35074099
20 sg:pub.10.1038/370204a0
21 sg:pub.10.1038/378139a0
22 schema:datePublished 2002-04
23 schema:datePublishedReg 2002-04-01
24 schema:description The complexity of ecosystems can cause subtle1 and chaotic responses to changes in external forcing2. Although ecosystems may not normally behave chaotically3, sensitivity to external influences associated with nonlinearity can lead to amplification of climatic signals. Strong correlations between an El Niño index and rainfall and maize yield in Zimbabwe have been demonstrated4; the correlation with maize yield was stronger than that with rainfall. A second example is the 100,000-year ice-age cycle, which may arise from a weak cycle in radiation through its influence on the concentration of atmospheric CO2 (ref. 5). Such integration of a weak climatic signal has yet to be demonstrated in a realistic theoretical system. Here we use a particular climatic phenomenon—the observed association between plankton populations around the UK and the position of the Gulf Stream6,7—as a probe to demonstrate how a detailed marine ecosystem model extracts a weak signal that is spread across different meteorological variables. Biological systems may therefore respond to climatic signals other than those that dominate the driving variables.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N49e774fd16064b0eb00d763ccf132d86
29 N5b072c71aea048deb614a881b1baa41c
30 sg:journal.1018957
31 schema:keywords CO2
32 El Niño index
33 Gulf
34 Niño Index
35 UK
36 Zimbabwe
37 amplification
38 association
39 atmospheric CO2
40 biological systems
41 changes
42 chaotic responses
43 chaotically3
44 climatic phenomena
45 climatic signal
46 complexity
47 complexity of ecosystems
48 concentration
49 correlation
50 cycle
51 demonstrated4
52 detailed marine ecosystem model
53 different meteorological variables
54 driving variables
55 ecosystem model
56 ecosystems
57 example
58 external forcing2
59 external influences
60 extraction
61 forcing2
62 ice-age cycles
63 index
64 influence
65 integration
66 maize yield
67 marine ecosystem model
68 meteorological variables
69 model
70 nonlinearity
71 observed associations
72 particular climatic phenomenon
73 phenomenon
74 plankton populations
75 population
76 position
77 probe
78 radiation
79 rainfall
80 realistic theoretical system
81 response
82 second example
83 sensitivity
84 signals
85 strong correlation
86 subtle1
87 such integration
88 system
89 theoretical system
90 variables
91 weak climatic signal
92 weak cycles
93 weak signals
94 yield
95 schema:name Extraction of a weak climatic signal by an ecosystem
96 schema:pagination 629-632
97 schema:productId N16515cdf6a1e4548bb09992f1a760c4f
98 N9cad5ef446584450b71af5f1f3434812
99 Nc83d51742ca94ec084e57123f9ab41a3
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025434538
101 https://doi.org/10.1038/416629a
102 schema:sdDatePublished 2021-12-01T19:14
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N8df4a5d78c2049d8963b15ba605e552b
105 schema:url https://doi.org/10.1038/416629a
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N104a32f916a241f49cfa215f5c8b1e9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Models, Biological
111 rdf:type schema:DefinedTerm
112 N16515cdf6a1e4548bb09992f1a760c4f schema:name doi
113 schema:value 10.1038/416629a
114 rdf:type schema:PropertyValue
115 N23496740a0c1453e918cd430ab53bd1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Water Movements
117 rdf:type schema:DefinedTerm
118 N2bc19c2f5efb4323be90bec16e51ef34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name United Kingdom
120 rdf:type schema:DefinedTerm
121 N2f4a5f2015824c5eb95b5a11e09f3cf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Computer Simulation
123 rdf:type schema:DefinedTerm
124 N49e774fd16064b0eb00d763ccf132d86 schema:volumeNumber 416
125 rdf:type schema:PublicationVolume
126 N5b072c71aea048deb614a881b1baa41c schema:issueNumber 6881
127 rdf:type schema:PublicationIssue
128 N6584c43db4ae48e9a0a5b85341453608 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Plankton
130 rdf:type schema:DefinedTerm
131 N6d60bfec45cd4e7bbef6a156e73c4299 rdf:first sg:person.01221320530.89
132 rdf:rest Na03ed28297da49e790e8f22a4d5d23d8
133 N882e7ece45d14c3d8c73750f3d704f0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Fresh Water
135 rdf:type schema:DefinedTerm
136 N8df36431319e4b82836692207ea414ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Biomass
138 rdf:type schema:DefinedTerm
139 N8df4a5d78c2049d8963b15ba605e552b schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N9923cf7255824f2db2440896f25132c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Climate
143 rdf:type schema:DefinedTerm
144 N9cad5ef446584450b71af5f1f3434812 schema:name pubmed_id
145 schema:value 11948350
146 rdf:type schema:PropertyValue
147 Na03ed28297da49e790e8f22a4d5d23d8 rdf:first Nca457990cfa44ad186c04316ba9977c6
148 rdf:rest rdf:nil
149 Nb6fd1cc684334aa8a967620afb07eb09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Temperature
151 rdf:type schema:DefinedTerm
152 Nc41251f1a57144c589bef8cba57f4c87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Animals
154 rdf:type schema:DefinedTerm
155 Nc83d51742ca94ec084e57123f9ab41a3 schema:name dimensions_id
156 schema:value pub.1025434538
157 rdf:type schema:PropertyValue
158 Nca457990cfa44ad186c04316ba9977c6 schema:affiliation grid-institutes:grid.12082.39
159 schema:familyName Clark
160 schema:givenName Paul A.
161 rdf:type schema:Person
162 Ncd248f7ff3ab479dbeb792b59e4babb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Seawater
164 rdf:type schema:DefinedTerm
165 Nd10a5ad3f45d4469a4085659a6499ed8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Ecosystem
167 rdf:type schema:DefinedTerm
168 Ne0268d95bc624d25ab84a24d3649f8af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Oceans and Seas
170 rdf:type schema:DefinedTerm
171 Nf3fcea15f7d44e48a2e3a7336969a3dc rdf:first sg:person.015232316321.43
172 rdf:rest N6d60bfec45cd4e7bbef6a156e73c4299
173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biological Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
177 schema:name Ecology
178 rdf:type schema:DefinedTerm
179 sg:journal.1018957 schema:issn 0028-0836
180 1476-4687
181 schema:name Nature
182 schema:publisher Springer Nature
183 rdf:type schema:Periodical
184 sg:person.01221320530.89 schema:affiliation grid-institutes:grid.22319.3b
185 schema:familyName Allen
186 schema:givenName J. Icarus
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221320530.89
188 rdf:type schema:Person
189 sg:person.015232316321.43 schema:affiliation grid-institutes:grid.11201.33
190 schema:familyName Taylor
191 schema:givenName Arnold H.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232316321.43
193 rdf:type schema:Person
194 sg:pub.10.1007/978-3-642-46416-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012267704
195 https://doi.org/10.1007/978-3-642-46416-4_16
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf00392495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035379750
198 https://doi.org/10.1007/bf00392495
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/35074099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015156954
201 https://doi.org/10.1038/35074099
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/370204a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026802797
204 https://doi.org/10.1038/370204a0
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/378139a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016265284
207 https://doi.org/10.1038/378139a0
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.11201.33 schema:alternateName Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK
210 schema:name Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK
211 Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK
212 rdf:type schema:Organization
213 grid-institutes:grid.12082.39 schema:alternateName Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK
214 schema:name Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK
215 rdf:type schema:Organization
216 grid-institutes:grid.22319.3b schema:alternateName Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK
217 schema:name Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...