Extraction of a weak climatic signal by an ecosystem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-04

AUTHORS

Arnold H. Taylor, J. Icarus Allen, Paul A. Clark

ABSTRACT

The complexity of ecosystems can cause subtle1 and chaotic responses to changes in external forcing2. Although ecosystems may not normally behave chaotically3, sensitivity to external influences associated with nonlinearity can lead to amplification of climatic signals. Strong correlations between an El Niño index and rainfall and maize yield in Zimbabwe have been demonstrated4; the correlation with maize yield was stronger than that with rainfall. A second example is the 100,000-year ice-age cycle, which may arise from a weak cycle in radiation through its influence on the concentration of atmospheric CO2 (ref. 5). Such integration of a weak climatic signal has yet to be demonstrated in a realistic theoretical system. Here we use a particular climatic phenomenon—the observed association between plankton populations around the UK and the position of the Gulf Stream6,7—as a probe to demonstrate how a detailed marine ecosystem model extracts a weak signal that is spread across different meteorological variables. Biological systems may therefore respond to climatic signals other than those that dominate the driving variables. More... »

PAGES

629-632

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/416629a

DOI

http://dx.doi.org/10.1038/416629a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025434538

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11948350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fresh Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oceans and Seas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plankton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seawater", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Movements", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK", 
          "id": "http://www.grid.ac/institutes/grid.11201.33", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK", 
            "Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Arnold H.", 
        "id": "sg:person.015232316321.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232316321.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK", 
          "id": "http://www.grid.ac/institutes/grid.22319.3b", 
          "name": [
            "Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "J. Icarus", 
        "id": "sg:person.01221320530.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221320530.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clark", 
        "givenName": "Paul A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/378139a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016265284", 
          "https://doi.org/10.1038/378139a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00392495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035379750", 
          "https://doi.org/10.1007/bf00392495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370204a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026802797", 
          "https://doi.org/10.1038/370204a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35074099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015156954", 
          "https://doi.org/10.1038/35074099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46416-4_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012267704", 
          "https://doi.org/10.1007/978-3-642-46416-4_16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "The complexity of ecosystems can cause subtle1 and chaotic responses to changes in external forcing2. Although ecosystems may not normally behave chaotically3, sensitivity to external influences associated with nonlinearity can lead to amplification of climatic signals. Strong correlations between an El Ni\u00f1o index and rainfall and maize yield in Zimbabwe have been demonstrated4; the correlation with maize yield was stronger than that with rainfall. A second example is the 100,000-year ice-age cycle, which may arise from a weak cycle in radiation through its influence on the concentration of atmospheric CO2 (ref. 5). Such integration of a weak climatic signal has yet to be demonstrated in a realistic theoretical system. Here we use a particular climatic phenomenon\u2014the observed association between plankton populations around the UK and the position of the Gulf Stream6,7\u2014as a probe to demonstrate how a detailed marine ecosystem model extracts a weak signal that is spread across different meteorological variables. Biological systems may therefore respond to climatic signals other than those that dominate the driving variables.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/416629a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6881", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "416"
      }
    ], 
    "keywords": [
      "complexity of ecosystems", 
      "marine ecosystem model", 
      "plankton populations", 
      "ecosystem model", 
      "ecosystems", 
      "atmospheric CO2", 
      "climatic signal", 
      "biological systems", 
      "driving variables", 
      "maize yield", 
      "climatic phenomena", 
      "demonstrated4", 
      "signals", 
      "cycle", 
      "amplification", 
      "yield", 
      "Gulf", 
      "weak signals", 
      "probe", 
      "population", 
      "rainfall", 
      "response", 
      "Ni\u00f1o Index", 
      "El Ni\u00f1o index", 
      "ice age cycles", 
      "strong correlation", 
      "observed associations", 
      "CO2", 
      "second example", 
      "changes", 
      "such integration", 
      "association", 
      "correlation", 
      "concentration", 
      "system", 
      "radiation", 
      "sensitivity", 
      "position", 
      "influence", 
      "complexity", 
      "different meteorological variables", 
      "Zimbabwe", 
      "external influences", 
      "weak cycles", 
      "integration", 
      "example", 
      "phenomenon", 
      "model", 
      "extraction", 
      "index", 
      "variables", 
      "meteorological variables", 
      "theoretical system", 
      "UK", 
      "chaotic responses", 
      "nonlinearity", 
      "subtle1", 
      "external forcing2", 
      "forcing2", 
      "chaotically3", 
      "year ice-age cycle", 
      "weak climatic signal", 
      "realistic theoretical system", 
      "particular climatic phenomenon", 
      "detailed marine ecosystem model"
    ], 
    "name": "Extraction of a weak climatic signal by an ecosystem", 
    "pagination": "629-632", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025434538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/416629a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11948350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/416629a", 
      "https://app.dimensions.ai/details/publication/pub.1025434538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_358.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/416629a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/416629a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/416629a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/416629a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/416629a'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      22 PREDICATES      110 URIs      97 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/416629a schema:about N0e57f22b382b47bbb739538abf705fc0
2 N19219f81363446e5a0e8e5421a9f71fa
3 N1a6eaeb51f494dea82bd53a815b79330
4 N223eeecdadec4da49a1a865054c9b32f
5 N23a4aadcb1b1475d93721f9c9c7d2426
6 N32698128b3754ac68279d3862cf66077
7 N38b464cded854a5b82f6e10c71976ce3
8 N76017abaa4ea4e8a811ae30e50543a5c
9 N867b73350d624070801ef51f3031f63e
10 N982161b2d5af4cdb91d4f038252d120e
11 Nbdc2be19cdbe43f9b3355906982804e9
12 Nd7660c3bc62b4262bbbb6c584a94218e
13 Ndab63a6c2a0f4764b67924c9f0ed2c15
14 anzsrc-for:06
15 anzsrc-for:0602
16 schema:author Nf67b6a503e2a44709627327164953424
17 schema:citation sg:pub.10.1007/978-3-642-46416-4_16
18 sg:pub.10.1007/bf00392495
19 sg:pub.10.1038/35074099
20 sg:pub.10.1038/370204a0
21 sg:pub.10.1038/378139a0
22 schema:datePublished 2002-04
23 schema:datePublishedReg 2002-04-01
24 schema:description The complexity of ecosystems can cause subtle1 and chaotic responses to changes in external forcing2. Although ecosystems may not normally behave chaotically3, sensitivity to external influences associated with nonlinearity can lead to amplification of climatic signals. Strong correlations between an El Niño index and rainfall and maize yield in Zimbabwe have been demonstrated4; the correlation with maize yield was stronger than that with rainfall. A second example is the 100,000-year ice-age cycle, which may arise from a weak cycle in radiation through its influence on the concentration of atmospheric CO2 (ref. 5). Such integration of a weak climatic signal has yet to be demonstrated in a realistic theoretical system. Here we use a particular climatic phenomenon—the observed association between plankton populations around the UK and the position of the Gulf Stream6,7—as a probe to demonstrate how a detailed marine ecosystem model extracts a weak signal that is spread across different meteorological variables. Biological systems may therefore respond to climatic signals other than those that dominate the driving variables.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N63e77e1925e74e58abd92ddd4044596d
29 Nbfb5505ceffc49de8eb5ef6ab844872f
30 sg:journal.1018957
31 schema:keywords CO2
32 El Niño index
33 Gulf
34 Niño Index
35 UK
36 Zimbabwe
37 amplification
38 association
39 atmospheric CO2
40 biological systems
41 changes
42 chaotic responses
43 chaotically3
44 climatic phenomena
45 climatic signal
46 complexity
47 complexity of ecosystems
48 concentration
49 correlation
50 cycle
51 demonstrated4
52 detailed marine ecosystem model
53 different meteorological variables
54 driving variables
55 ecosystem model
56 ecosystems
57 example
58 external forcing2
59 external influences
60 extraction
61 forcing2
62 ice age cycles
63 index
64 influence
65 integration
66 maize yield
67 marine ecosystem model
68 meteorological variables
69 model
70 nonlinearity
71 observed associations
72 particular climatic phenomenon
73 phenomenon
74 plankton populations
75 population
76 position
77 probe
78 radiation
79 rainfall
80 realistic theoretical system
81 response
82 second example
83 sensitivity
84 signals
85 strong correlation
86 subtle1
87 such integration
88 system
89 theoretical system
90 variables
91 weak climatic signal
92 weak cycles
93 weak signals
94 year ice-age cycle
95 yield
96 schema:name Extraction of a weak climatic signal by an ecosystem
97 schema:pagination 629-632
98 schema:productId Naed2021f6e2c4aa6a7a4ff6ee72cd8d6
99 Nd2b19d30fc894f42a15f425eff467ff4
100 Nfbe6c72fd6d94ea481e6409d3b1e4967
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025434538
102 https://doi.org/10.1038/416629a
103 schema:sdDatePublished 2022-01-01T18:12
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher Nea5f7ec94e0b4b27a6ed51754b09ace3
106 schema:url https://doi.org/10.1038/416629a
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N0e57f22b382b47bbb739538abf705fc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Oceans and Seas
112 rdf:type schema:DefinedTerm
113 N19219f81363446e5a0e8e5421a9f71fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Biomass
115 rdf:type schema:DefinedTerm
116 N1a6eaeb51f494dea82bd53a815b79330 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Climate
118 rdf:type schema:DefinedTerm
119 N223eeecdadec4da49a1a865054c9b32f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Fresh Water
121 rdf:type schema:DefinedTerm
122 N23a4aadcb1b1475d93721f9c9c7d2426 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Animals
124 rdf:type schema:DefinedTerm
125 N32698128b3754ac68279d3862cf66077 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name United Kingdom
127 rdf:type schema:DefinedTerm
128 N37210ef52a544c2fbe9bd097b453fc06 rdf:first N592167a597a74ddc99ce9975327ce5d6
129 rdf:rest rdf:nil
130 N38b464cded854a5b82f6e10c71976ce3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Water Movements
132 rdf:type schema:DefinedTerm
133 N592167a597a74ddc99ce9975327ce5d6 schema:affiliation grid-institutes:grid.12082.39
134 schema:familyName Clark
135 schema:givenName Paul A.
136 rdf:type schema:Person
137 N63e77e1925e74e58abd92ddd4044596d schema:issueNumber 6881
138 rdf:type schema:PublicationIssue
139 N76017abaa4ea4e8a811ae30e50543a5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Models, Biological
141 rdf:type schema:DefinedTerm
142 N867b73350d624070801ef51f3031f63e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Ecosystem
144 rdf:type schema:DefinedTerm
145 N982161b2d5af4cdb91d4f038252d120e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Computer Simulation
147 rdf:type schema:DefinedTerm
148 Naed2021f6e2c4aa6a7a4ff6ee72cd8d6 schema:name doi
149 schema:value 10.1038/416629a
150 rdf:type schema:PropertyValue
151 Nb92bbe27a93745e6a1baffcab41366dd rdf:first sg:person.01221320530.89
152 rdf:rest N37210ef52a544c2fbe9bd097b453fc06
153 Nbdc2be19cdbe43f9b3355906982804e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Plankton
155 rdf:type schema:DefinedTerm
156 Nbfb5505ceffc49de8eb5ef6ab844872f schema:volumeNumber 416
157 rdf:type schema:PublicationVolume
158 Nd2b19d30fc894f42a15f425eff467ff4 schema:name pubmed_id
159 schema:value 11948350
160 rdf:type schema:PropertyValue
161 Nd7660c3bc62b4262bbbb6c584a94218e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Seawater
163 rdf:type schema:DefinedTerm
164 Ndab63a6c2a0f4764b67924c9f0ed2c15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Temperature
166 rdf:type schema:DefinedTerm
167 Nea5f7ec94e0b4b27a6ed51754b09ace3 schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 Nf67b6a503e2a44709627327164953424 rdf:first sg:person.015232316321.43
170 rdf:rest Nb92bbe27a93745e6a1baffcab41366dd
171 Nfbe6c72fd6d94ea481e6409d3b1e4967 schema:name dimensions_id
172 schema:value pub.1025434538
173 rdf:type schema:PropertyValue
174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
175 schema:name Biological Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
178 schema:name Ecology
179 rdf:type schema:DefinedTerm
180 sg:journal.1018957 schema:issn 0028-0836
181 1476-4687
182 schema:name Nature
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.01221320530.89 schema:affiliation grid-institutes:grid.22319.3b
186 schema:familyName Allen
187 schema:givenName J. Icarus
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221320530.89
189 rdf:type schema:Person
190 sg:person.015232316321.43 schema:affiliation grid-institutes:grid.11201.33
191 schema:familyName Taylor
192 schema:givenName Arnold H.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232316321.43
194 rdf:type schema:Person
195 sg:pub.10.1007/978-3-642-46416-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012267704
196 https://doi.org/10.1007/978-3-642-46416-4_16
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/bf00392495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035379750
199 https://doi.org/10.1007/bf00392495
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/35074099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015156954
202 https://doi.org/10.1038/35074099
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/370204a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026802797
205 https://doi.org/10.1038/370204a0
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/378139a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016265284
208 https://doi.org/10.1038/378139a0
209 rdf:type schema:CreativeWork
210 grid-institutes:grid.11201.33 schema:alternateName Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK
211 schema:name Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK
212 Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK
213 rdf:type schema:Organization
214 grid-institutes:grid.12082.39 schema:alternateName Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK
215 schema:name Department of Geography, University of Sussex, BN1 9SJ, Brighton, UK
216 rdf:type schema:Organization
217 grid-institutes:grid.22319.3b schema:alternateName Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK
218 schema:name Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...