Ultra-broadband semiconductor laser View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-02

AUTHORS

Claire Gmachl, Deborah L. Sivco, Raffaele Colombelli, Federico Capasso, Alfred Y. Cho

ABSTRACT

The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum1,2, multi-peaked gain spectra3,4, and the most favoured technique at present, ultrashort pulse excitation5,6. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared ‘supercontinuum’ semiconductor laser that has none of these drawbacks. We adopt a quantum cascade7,8 configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 µm wavelength. Laser action with a Fabry–Pérot spectrum covering all wavelengths from 6 to 8 µm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications9 or ultra-precision metrology10 and spectroscopy11. More... »

PAGES

883-887

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/415883a

DOI

http://dx.doi.org/10.1038/415883a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035651066

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11859362


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gmachl", 
        "givenName": "Claire", 
        "id": "sg:person.0633045452.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633045452.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivco", 
        "givenName": "Deborah L.", 
        "id": "sg:person.0622134406.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622134406.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colombelli", 
        "givenName": "Raffaele", 
        "id": "sg:person.01310405707.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310405707.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Capasso", 
        "givenName": "Federico", 
        "id": "sg:person.01334447261.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334447261.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.469490.6", 
          "name": [
            "Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Alfred Y.", 
        "id": "sg:person.01131635652.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131635652.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-02", 
    "datePublishedReg": "2002-02-01", 
    "description": "The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum1,2, multi-peaked gain spectra3,4, and the most favoured technique at present, ultrashort pulse excitation5,6. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared \u2018supercontinuum\u2019 semiconductor laser that has none of these drawbacks. We adopt a quantum cascade7,8 configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8\u2009\u00b5m wavelength. Laser action with a Fabry\u2013P\u00e9rot spectrum covering all wavelengths from 6 to 8\u2009\u00b5m simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications9 or ultra-precision metrology10 and spectroscopy11.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/415883a", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6874", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "415"
      }
    ], 
    "keywords": [
      "laser action", 
      "semiconductor lasers", 
      "intersubband optical transitions", 
      "broadband optical gain", 
      "Fabry-P\u00e9rot spectrum", 
      "single-wavelength emission", 
      "laser cavity configuration", 
      "wide wavelength range", 
      "optical feedback", 
      "optical gain", 
      "ultrashort pulses", 
      "optical transitions", 
      "wavelength range", 
      "cavity configuration", 
      "laser", 
      "envelope function", 
      "wavelength", 
      "supercontinuum", 
      "quantum", 
      "favoured technique", 
      "pulses", 
      "spectra", 
      "fundamental mechanisms", 
      "emission", 
      "configuration", 
      "continuous mode", 
      "transition", 
      "light", 
      "gain", 
      "drawbacks", 
      "mode", 
      "range", 
      "applications", 
      "technique", 
      "wing", 
      "order", 
      "approach", 
      "function", 
      "mechanism", 
      "interest", 
      "feedback", 
      "number", 
      "inability", 
      "action"
    ], 
    "name": "Ultra-broadband semiconductor laser", 
    "pagination": "883-887", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035651066"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/415883a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11859362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/415883a", 
      "https://app.dimensions.ai/details/publication/pub.1035651066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_351.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/415883a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/415883a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/415883a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/415883a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/415883a'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      20 PREDICATES      72 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/415883a schema:about anzsrc-for:02
2 anzsrc-for:0205
3 anzsrc-for:09
4 anzsrc-for:0906
5 schema:author Nfe174a7ee3f9401fa64c9c837e5d7f8c
6 schema:datePublished 2002-02
7 schema:datePublishedReg 2002-02-01
8 schema:description The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum1,2, multi-peaked gain spectra3,4, and the most favoured technique at present, ultrashort pulse excitation5,6. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared ‘supercontinuum’ semiconductor laser that has none of these drawbacks. We adopt a quantum cascade7,8 configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 µm wavelength. Laser action with a Fabry–Pérot spectrum covering all wavelengths from 6 to 8 µm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications9 or ultra-precision metrology10 and spectroscopy11.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N2419397936d24dd9a7761261822b2535
12 N32b884c4b0a54d54be5850b150f855bd
13 sg:journal.1018957
14 schema:keywords Fabry-Pérot spectrum
15 action
16 applications
17 approach
18 broadband optical gain
19 cavity configuration
20 configuration
21 continuous mode
22 drawbacks
23 emission
24 envelope function
25 favoured technique
26 feedback
27 function
28 fundamental mechanisms
29 gain
30 inability
31 interest
32 intersubband optical transitions
33 laser
34 laser action
35 laser cavity configuration
36 light
37 mechanism
38 mode
39 number
40 optical feedback
41 optical gain
42 optical transitions
43 order
44 pulses
45 quantum
46 range
47 semiconductor lasers
48 single-wavelength emission
49 spectra
50 supercontinuum
51 technique
52 transition
53 ultrashort pulses
54 wavelength
55 wavelength range
56 wide wavelength range
57 wing
58 schema:name Ultra-broadband semiconductor laser
59 schema:pagination 883-887
60 schema:productId N7a2e92c1256f408a9209dd9d0d83cf96
61 Nf70948dd6ae54e4184d0e41fee1fa200
62 Nf84bffb1a46a49e89621b46beef7db94
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035651066
64 https://doi.org/10.1038/415883a
65 schema:sdDatePublished 2022-10-01T06:31
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N053c3a25965143a09273ea09f541733a
68 schema:url https://doi.org/10.1038/415883a
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N053c3a25965143a09273ea09f541733a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N2419397936d24dd9a7761261822b2535 schema:issueNumber 6874
75 rdf:type schema:PublicationIssue
76 N32b884c4b0a54d54be5850b150f855bd schema:volumeNumber 415
77 rdf:type schema:PublicationVolume
78 N67c0402b62844db38b9ba453ef84fd80 rdf:first sg:person.01131635652.35
79 rdf:rest rdf:nil
80 N7a2e92c1256f408a9209dd9d0d83cf96 schema:name dimensions_id
81 schema:value pub.1035651066
82 rdf:type schema:PropertyValue
83 N9038d26911dc4d9d8c76810581ccb59a rdf:first sg:person.01310405707.20
84 rdf:rest Nec39f4f8b3c3441088bc86ecf8bc1dd9
85 Nec39f4f8b3c3441088bc86ecf8bc1dd9 rdf:first sg:person.01334447261.50
86 rdf:rest N67c0402b62844db38b9ba453ef84fd80
87 Nf70948dd6ae54e4184d0e41fee1fa200 schema:name doi
88 schema:value 10.1038/415883a
89 rdf:type schema:PropertyValue
90 Nf84bffb1a46a49e89621b46beef7db94 schema:name pubmed_id
91 schema:value 11859362
92 rdf:type schema:PropertyValue
93 Nfcc193e8ce6a4640a755495f92de310a rdf:first sg:person.0622134406.97
94 rdf:rest N9038d26911dc4d9d8c76810581ccb59a
95 Nfe174a7ee3f9401fa64c9c837e5d7f8c rdf:first sg:person.0633045452.51
96 rdf:rest Nfcc193e8ce6a4640a755495f92de310a
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
101 schema:name Optical Physics
102 rdf:type schema:DefinedTerm
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
107 schema:name Electrical and Electronic Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1018957 schema:issn 0028-0836
110 1476-4687
111 schema:name Nature
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.01131635652.35 schema:affiliation grid-institutes:grid.469490.6
115 schema:familyName Cho
116 schema:givenName Alfred Y.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131635652.35
118 rdf:type schema:Person
119 sg:person.01310405707.20 schema:affiliation grid-institutes:grid.469490.6
120 schema:familyName Colombelli
121 schema:givenName Raffaele
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310405707.20
123 rdf:type schema:Person
124 sg:person.01334447261.50 schema:affiliation grid-institutes:grid.469490.6
125 schema:familyName Capasso
126 schema:givenName Federico
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334447261.50
128 rdf:type schema:Person
129 sg:person.0622134406.97 schema:affiliation grid-institutes:grid.469490.6
130 schema:familyName Sivco
131 schema:givenName Deborah L.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622134406.97
133 rdf:type schema:Person
134 sg:person.0633045452.51 schema:affiliation grid-institutes:grid.469490.6
135 schema:familyName Gmachl
136 schema:givenName Claire
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633045452.51
138 rdf:type schema:Person
139 grid-institutes:grid.469490.6 schema:alternateName Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA
140 schema:name Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, 07974, Murray Hill, New Jersey, USA
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...