Quantifying the risk of extreme seasonal precipitation events in a changing climate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

T. N. Palmer, J. Räisänen

ABSTRACT

Increasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate1. But because—by definition—extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions2, as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a ‘best guess’ scenario to address this sort of problem3,4. Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins. More... »

PAGES

512-514

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/415512a

DOI

http://dx.doi.org/10.1038/415512a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016943344

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11823856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmer", 
        "givenName": "T. N.", 
        "id": "sg:person.01025637330.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025637330.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rossby Centre, SMHI, S-60176, Norrk\u00f6ping, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.6057.4", 
          "name": [
            "Rossby Centre, SMHI, S-60176, Norrk\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00e4is\u00e4nen", 
        "givenName": "J.", 
        "id": "sg:person.010435725117.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435725117.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/44266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034790274", 
          "https://doi.org/10.1038/44266"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "Increasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate1. But because\u2014by definition\u2014extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions2, as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a \u2018best guess\u2019 scenario to address this sort of problem3,4. Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/415512a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6871", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "415"
      }
    ], 
    "keywords": [
      "global climate model simulations", 
      "climate model simulations", 
      "boreal winter precipitation", 
      "Asian monsoon region", 
      "seasonal precipitation events", 
      "atmospheric carbon dioxide", 
      "risk of extremes", 
      "monsoon region", 
      "boreal summer", 
      "precipitation events", 
      "winter precipitation", 
      "deterministic forecasts", 
      "River Basin", 
      "model simulations", 
      "large ensemble", 
      "medium-term forecasts", 
      "climate", 
      "forecasts", 
      "carbon dioxide", 
      "best guess", 
      "binary decision model", 
      "basin", 
      "climate1", 
      "events", 
      "precipitation", 
      "flooding", 
      "summer", 
      "weather", 
      "extremes", 
      "probabilistic analysis", 
      "scenarios", 
      "ensemble", 
      "standard deviation", 
      "region", 
      "dioxide", 
      "resolution", 
      "wide range", 
      "part", 
      "changes", 
      "concentration", 
      "Bangladesh", 
      "simulations", 
      "implications", 
      "range", 
      "model", 
      "guess", 
      "years", 
      "increase", 
      "UK", 
      "deviation", 
      "probability", 
      "similar increase", 
      "analysis", 
      "factors", 
      "technique", 
      "use", 
      "risk", 
      "applications", 
      "sort", 
      "practical applications", 
      "decision model", 
      "further practical applications"
    ], 
    "name": "Quantifying the risk of extreme seasonal precipitation events in a changing climate", 
    "pagination": "512-514", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016943344"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/415512a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11823856"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/415512a", 
      "https://app.dimensions.ai/details/publication/pub.1016943344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_351.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/415512a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/415512a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/415512a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/415512a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/415512a'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      90 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/415512a schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N53bc40c0c3404522a669c1371e09757b
4 schema:citation sg:pub.10.1038/44266
5 schema:datePublished 2002-01
6 schema:datePublishedReg 2002-01-01
7 schema:description Increasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate1. But because—by definition—extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions2, as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a ‘best guess’ scenario to address this sort of problem3,4. Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9a7e0661f860405784ad07a58c37be9f
12 Nb465ab35c02a4f5cb1bec7383feb645c
13 sg:journal.1018957
14 schema:keywords Asian monsoon region
15 Bangladesh
16 River Basin
17 UK
18 analysis
19 applications
20 atmospheric carbon dioxide
21 basin
22 best guess
23 binary decision model
24 boreal summer
25 boreal winter precipitation
26 carbon dioxide
27 changes
28 climate
29 climate model simulations
30 climate1
31 concentration
32 decision model
33 deterministic forecasts
34 deviation
35 dioxide
36 ensemble
37 events
38 extremes
39 factors
40 flooding
41 forecasts
42 further practical applications
43 global climate model simulations
44 guess
45 implications
46 increase
47 large ensemble
48 medium-term forecasts
49 model
50 model simulations
51 monsoon region
52 part
53 practical applications
54 precipitation
55 precipitation events
56 probabilistic analysis
57 probability
58 range
59 region
60 resolution
61 risk
62 risk of extremes
63 scenarios
64 seasonal precipitation events
65 similar increase
66 simulations
67 sort
68 standard deviation
69 summer
70 technique
71 use
72 weather
73 wide range
74 winter precipitation
75 years
76 schema:name Quantifying the risk of extreme seasonal precipitation events in a changing climate
77 schema:pagination 512-514
78 schema:productId N51d781aa96b14e129f8974a146f68c64
79 N70d077fafbb44e50a73f8725aa1a28ea
80 Nf6e10ba90cf149ef93e801aba7723226
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943344
82 https://doi.org/10.1038/415512a
83 schema:sdDatePublished 2022-05-10T09:50
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Ne9124d54d1334e9ea2001b09f46a2729
86 schema:url https://doi.org/10.1038/415512a
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N51d781aa96b14e129f8974a146f68c64 schema:name doi
91 schema:value 10.1038/415512a
92 rdf:type schema:PropertyValue
93 N53bc40c0c3404522a669c1371e09757b rdf:first sg:person.01025637330.21
94 rdf:rest N5932874d0f0c4b749728ff87cc2e7b83
95 N5932874d0f0c4b749728ff87cc2e7b83 rdf:first sg:person.010435725117.22
96 rdf:rest rdf:nil
97 N70d077fafbb44e50a73f8725aa1a28ea schema:name dimensions_id
98 schema:value pub.1016943344
99 rdf:type schema:PropertyValue
100 N9a7e0661f860405784ad07a58c37be9f schema:volumeNumber 415
101 rdf:type schema:PublicationVolume
102 Nb465ab35c02a4f5cb1bec7383feb645c schema:issueNumber 6871
103 rdf:type schema:PublicationIssue
104 Ne9124d54d1334e9ea2001b09f46a2729 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nf6e10ba90cf149ef93e801aba7723226 schema:name pubmed_id
107 schema:value 11823856
108 rdf:type schema:PropertyValue
109 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
110 schema:name Earth Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
113 schema:name Atmospheric Sciences
114 rdf:type schema:DefinedTerm
115 sg:journal.1018957 schema:issn 0028-0836
116 1476-4687
117 schema:name Nature
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01025637330.21 schema:affiliation grid-institutes:grid.42781.38
121 schema:familyName Palmer
122 schema:givenName T. N.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025637330.21
124 rdf:type schema:Person
125 sg:person.010435725117.22 schema:affiliation grid-institutes:grid.6057.4
126 schema:familyName Räisänen
127 schema:givenName J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435725117.22
129 rdf:type schema:Person
130 sg:pub.10.1038/44266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790274
131 https://doi.org/10.1038/44266
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK
134 schema:name European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK
135 rdf:type schema:Organization
136 grid-institutes:grid.6057.4 schema:alternateName Rossby Centre, SMHI, S-60176, Norrköping, Sweden
137 schema:name Rossby Centre, SMHI, S-60176, Norrköping, Sweden
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...