Ontology type: schema:ScholarlyArticle
2002-01
AUTHORS ABSTRACTIncreasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate1. But because—by definition—extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions2, as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a ‘best guess’ scenario to address this sort of problem3,4. Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins. More... »
PAGES512-514
http://scigraph.springernature.com/pub.10.1038/415512a
DOIhttp://dx.doi.org/10.1038/415512a
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016943344
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/11823856
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK",
"id": "http://www.grid.ac/institutes/grid.42781.38",
"name": [
"European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK"
],
"type": "Organization"
},
"familyName": "Palmer",
"givenName": "T. N.",
"id": "sg:person.01025637330.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025637330.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Rossby Centre, SMHI, S-60176, Norrk\u00f6ping, Sweden",
"id": "http://www.grid.ac/institutes/grid.6057.4",
"name": [
"Rossby Centre, SMHI, S-60176, Norrk\u00f6ping, Sweden"
],
"type": "Organization"
},
"familyName": "R\u00e4is\u00e4nen",
"givenName": "J.",
"id": "sg:person.010435725117.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435725117.22"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/44266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034790274",
"https://doi.org/10.1038/44266"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-01",
"datePublishedReg": "2002-01-01",
"description": "Increasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate1. But because\u2014by definition\u2014extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions2, as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a \u2018best guess\u2019 scenario to address this sort of problem3,4. Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins.",
"genre": "article",
"id": "sg:pub.10.1038/415512a",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6871",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "415"
}
],
"keywords": [
"global climate model simulations",
"climate model simulations",
"boreal winter precipitation",
"Asian monsoon region",
"seasonal precipitation events",
"atmospheric carbon dioxide",
"risk of extremes",
"monsoon region",
"boreal summer",
"precipitation events",
"winter precipitation",
"deterministic forecasts",
"River Basin",
"model simulations",
"large ensemble",
"medium-term forecasts",
"climate",
"forecasts",
"carbon dioxide",
"best guess",
"binary decision model",
"basin",
"climate1",
"events",
"precipitation",
"flooding",
"summer",
"weather",
"extremes",
"probabilistic analysis",
"scenarios",
"ensemble",
"standard deviation",
"region",
"dioxide",
"resolution",
"wide range",
"part",
"changes",
"concentration",
"Bangladesh",
"simulations",
"implications",
"range",
"model",
"guess",
"years",
"increase",
"UK",
"deviation",
"probability",
"similar increase",
"analysis",
"factors",
"technique",
"use",
"risk",
"applications",
"sort",
"practical applications",
"decision model",
"further practical applications"
],
"name": "Quantifying the risk of extreme seasonal precipitation events in a changing climate",
"pagination": "512-514",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016943344"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/415512a"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"11823856"
]
}
],
"sameAs": [
"https://doi.org/10.1038/415512a",
"https://app.dimensions.ai/details/publication/pub.1016943344"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_349.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/415512a"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/415512a'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/415512a'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/415512a'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/415512a'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
22 PREDICATES
90 URIs
81 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/415512a | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | Nfddf985d25ab411bb6ff997fc0630847 |
4 | ″ | schema:citation | sg:pub.10.1038/44266 |
5 | ″ | schema:datePublished | 2002-01 |
6 | ″ | schema:datePublishedReg | 2002-01-01 |
7 | ″ | schema:description | Increasing concentrations of atmospheric carbon dioxide will almost certainly lead to changes in global mean climate1. But because—by definition—extreme events are rare, it is significantly more difficult to quantify the risk of extremes. Ensemble-based probabilistic predictions2, as used in short- and medium-term forecasts of weather and climate, are more useful than deterministic forecasts using a ‘best guess’ scenario to address this sort of problem3,4. Here we present a probabilistic analysis of 19 global climate model simulations with a generic binary decision model. We estimate that the probability of total boreal winter precipitation exceeding two standard deviations above normal will increase by a factor of five over parts of the UK over the next 100 years. We find similar increases in probability for the Asian monsoon region in boreal summer, with implications for flooding in Bangladesh. Further practical applications of our techniques would be helped by the use of larger ensembles (for a more complete sampling of model uncertainty) and a wider range of scenarios at a resolution adequate to analyse average-size river basins. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N345a773ee25e46ec9b7ff66874da11a9 |
12 | ″ | ″ | Ncb5b0fc3f36142549cfbf1da9ee7f2fd |
13 | ″ | ″ | sg:journal.1018957 |
14 | ″ | schema:keywords | Asian monsoon region |
15 | ″ | ″ | Bangladesh |
16 | ″ | ″ | River Basin |
17 | ″ | ″ | UK |
18 | ″ | ″ | analysis |
19 | ″ | ″ | applications |
20 | ″ | ″ | atmospheric carbon dioxide |
21 | ″ | ″ | basin |
22 | ″ | ″ | best guess |
23 | ″ | ″ | binary decision model |
24 | ″ | ″ | boreal summer |
25 | ″ | ″ | boreal winter precipitation |
26 | ″ | ″ | carbon dioxide |
27 | ″ | ″ | changes |
28 | ″ | ″ | climate |
29 | ″ | ″ | climate model simulations |
30 | ″ | ″ | climate1 |
31 | ″ | ″ | concentration |
32 | ″ | ″ | decision model |
33 | ″ | ″ | deterministic forecasts |
34 | ″ | ″ | deviation |
35 | ″ | ″ | dioxide |
36 | ″ | ″ | ensemble |
37 | ″ | ″ | events |
38 | ″ | ″ | extremes |
39 | ″ | ″ | factors |
40 | ″ | ″ | flooding |
41 | ″ | ″ | forecasts |
42 | ″ | ″ | further practical applications |
43 | ″ | ″ | global climate model simulations |
44 | ″ | ″ | guess |
45 | ″ | ″ | implications |
46 | ″ | ″ | increase |
47 | ″ | ″ | large ensemble |
48 | ″ | ″ | medium-term forecasts |
49 | ″ | ″ | model |
50 | ″ | ″ | model simulations |
51 | ″ | ″ | monsoon region |
52 | ″ | ″ | part |
53 | ″ | ″ | practical applications |
54 | ″ | ″ | precipitation |
55 | ″ | ″ | precipitation events |
56 | ″ | ″ | probabilistic analysis |
57 | ″ | ″ | probability |
58 | ″ | ″ | range |
59 | ″ | ″ | region |
60 | ″ | ″ | resolution |
61 | ″ | ″ | risk |
62 | ″ | ″ | risk of extremes |
63 | ″ | ″ | scenarios |
64 | ″ | ″ | seasonal precipitation events |
65 | ″ | ″ | similar increase |
66 | ″ | ″ | simulations |
67 | ″ | ″ | sort |
68 | ″ | ″ | standard deviation |
69 | ″ | ″ | summer |
70 | ″ | ″ | technique |
71 | ″ | ″ | use |
72 | ″ | ″ | weather |
73 | ″ | ″ | wide range |
74 | ″ | ″ | winter precipitation |
75 | ″ | ″ | years |
76 | ″ | schema:name | Quantifying the risk of extreme seasonal precipitation events in a changing climate |
77 | ″ | schema:pagination | 512-514 |
78 | ″ | schema:productId | N35d4f1144d104e4f8c834f49708cbbd8 |
79 | ″ | ″ | N4d5ab713bcff4633b286e728617813d5 |
80 | ″ | ″ | Naa6314669e0a4836ae718bf43500058e |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016943344 |
82 | ″ | ″ | https://doi.org/10.1038/415512a |
83 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | Nd2596dbb6a44447b89733a208631e5d9 |
86 | ″ | schema:url | https://doi.org/10.1038/415512a |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N345a773ee25e46ec9b7ff66874da11a9 | schema:issueNumber | 6871 |
91 | ″ | rdf:type | schema:PublicationIssue |
92 | N35d4f1144d104e4f8c834f49708cbbd8 | schema:name | pubmed_id |
93 | ″ | schema:value | 11823856 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N4d5ab713bcff4633b286e728617813d5 | schema:name | dimensions_id |
96 | ″ | schema:value | pub.1016943344 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | Naa6314669e0a4836ae718bf43500058e | schema:name | doi |
99 | ″ | schema:value | 10.1038/415512a |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nb878c6047fab41be993cdb727dec9d4a | rdf:first | sg:person.010435725117.22 |
102 | ″ | rdf:rest | rdf:nil |
103 | Ncb5b0fc3f36142549cfbf1da9ee7f2fd | schema:volumeNumber | 415 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | Nd2596dbb6a44447b89733a208631e5d9 | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | Nfddf985d25ab411bb6ff997fc0630847 | rdf:first | sg:person.01025637330.21 |
108 | ″ | rdf:rest | Nb878c6047fab41be993cdb727dec9d4a |
109 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Earth Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Atmospheric Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:journal.1018957 | schema:issn | 0028-0836 |
116 | ″ | ″ | 1476-4687 |
117 | ″ | schema:name | Nature |
118 | ″ | schema:publisher | Springer Nature |
119 | ″ | rdf:type | schema:Periodical |
120 | sg:person.01025637330.21 | schema:affiliation | grid-institutes:grid.42781.38 |
121 | ″ | schema:familyName | Palmer |
122 | ″ | schema:givenName | T. N. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025637330.21 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.010435725117.22 | schema:affiliation | grid-institutes:grid.6057.4 |
126 | ″ | schema:familyName | Räisänen |
127 | ″ | schema:givenName | J. |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435725117.22 |
129 | ″ | rdf:type | schema:Person |
130 | sg:pub.10.1038/44266 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034790274 |
131 | ″ | ″ | https://doi.org/10.1038/44266 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | grid-institutes:grid.42781.38 | schema:alternateName | European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK |
134 | ″ | schema:name | European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG2 9AX, Reading, Berks, UK |
135 | ″ | rdf:type | schema:Organization |
136 | grid-institutes:grid.6057.4 | schema:alternateName | Rossby Centre, SMHI, S-60176, Norrköping, Sweden |
137 | ″ | schema:name | Rossby Centre, SMHI, S-60176, Norrköping, Sweden |
138 | ″ | rdf:type | schema:Organization |