Humans integrate visual and haptic information in a statistically optimal fashion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

Marc O Ernst, Martin S Banks

ABSTRACT

When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation. More... »

PAGES

429

References to SciGraph publications

  • 1982-07. Visual and tactual texture perception: Intersensory cooperation in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • 2000-10. How Optimal Depth Cue Integration Depends on the Task in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2000-01. Touch can change visual slant perception in NATURE NEUROSCIENCE
  • 1965-01. Visual capture produced by prism spectacles in PSYCHONOMIC SCIENCE
  • 1990. Data Fusion for Sensory Information Processing Systems in NONE
  • 1969-09. Visual capture of haptically judged depth in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/415429a

    DOI

    http://dx.doi.org/10.1038/415429a

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008215698

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11807554


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensory Thresholds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Size Perception", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Touch", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020, USA. marc.ernst@tuebingen.mpg.de"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ernst", 
            "givenName": "Marc O", 
            "id": "sg:person.01016301243.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016301243.44"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Banks", 
            "givenName": "Martin S", 
            "id": "sg:person.0575545320.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575545320.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.3758/bf03209572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000489521", 
              "https://doi.org/10.3758/bf03209572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0042-6989(97)00325-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004780403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.1997.0139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005451433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026557704054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007282318", 
              "https://doi.org/10.1023/a:1026557704054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0024514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008825444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0042-6989(94)00176-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009462383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0042-6989(97)00179-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009631891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0042-6989(93)90037-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013905364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0042-6989(93)90037-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013905364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-2909.88.3.638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017885181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03343413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021862692", 
              "https://doi.org/10.3758/bf03343413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03202657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023078958", 
              "https://doi.org/10.3758/bf03202657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0074626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026566562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1059201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029176038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0096-1523.7.4.902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032058332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036166194", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2076-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036166194", 
              "https://doi.org/10.1007/978-1-4757-2076-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2076-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036166194", 
              "https://doi.org/10.1007/978-1-4757-2076-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-4115(97)80006-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036719631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9280.00270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036825216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9280.00270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036825216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0024766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038615959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/71140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041810359", 
              "https://doi.org/10.1038/71140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/71140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041810359", 
              "https://doi.org/10.1038/71140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1068/p090457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058162324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1068/p090457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058162324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1068/p120607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058162583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1068/p120607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058162583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1068/p2753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058163929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1068/p2753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058163929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.143.3606.594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062481796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.1999.81.3.1355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074267359"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-01", 
        "datePublishedReg": "2002-01-01", 
        "description": "When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/415429a", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6870", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "415"
          }
        ], 
        "name": "Humans integrate visual and haptic information in a statistically optimal fashion", 
        "pagination": "429", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2723e612d7f87efbdc69fee742ff382c7162a6e58b0037c448ed9f5f5f6939e1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11807554"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/415429a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008215698"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/415429a", 
          "https://app.dimensions.ai/details/publication/pub.1008215698"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87104_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/415429a"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/415429a'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/415429a'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/415429a'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/415429a'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      60 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/415429a schema:about N1810645b1763465983d65ee6f468d41b
    2 N4f2318cd5d964fc2a42d1b0b155d2760
    3 N80257bb89dd248bba151b2d9b095abb2
    4 Nc4e578b38ad94a8995a8b5ea9e2fcca3
    5 Nd360e6c5832e4ba4966a74863d1de7c2
    6 Nfd36ba9453e54ee2964de005e395df2b
    7 anzsrc-for:17
    8 anzsrc-for:1701
    9 schema:author Ne7ddea711ba7467f957e7db3768d5841
    10 schema:citation sg:pub.10.1007/978-1-4757-2076-1
    11 sg:pub.10.1023/a:1026557704054
    12 sg:pub.10.1038/71140
    13 sg:pub.10.3758/bf03202657
    14 sg:pub.10.3758/bf03209572
    15 sg:pub.10.3758/bf03343413
    16 https://app.dimensions.ai/details/publication/pub.1036166194
    17 https://doi.org/10.1016/0042-6989(93)90037-w
    18 https://doi.org/10.1016/0042-6989(94)00176-m
    19 https://doi.org/10.1016/s0042-6989(97)00179-x
    20 https://doi.org/10.1016/s0042-6989(97)00325-8
    21 https://doi.org/10.1016/s0166-4115(97)80006-4
    22 https://doi.org/10.1037/0033-2909.88.3.638
    23 https://doi.org/10.1037/0096-1523.7.4.902
    24 https://doi.org/10.1037/h0024514
    25 https://doi.org/10.1037/h0024766
    26 https://doi.org/10.1037/h0074626
    27 https://doi.org/10.1068/p090457
    28 https://doi.org/10.1068/p120607
    29 https://doi.org/10.1068/p2753
    30 https://doi.org/10.1098/rspb.1997.0139
    31 https://doi.org/10.1111/1467-9280.00270
    32 https://doi.org/10.1126/science.1059201
    33 https://doi.org/10.1126/science.143.3606.594
    34 https://doi.org/10.1152/jn.1999.81.3.1355
    35 schema:datePublished 2002-01
    36 schema:datePublishedReg 2002-01-01
    37 schema:description When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N23c3492eaa324e0282910172303fada3
    42 Nb8431cb54bae4770849f71065d8cdbef
    43 sg:journal.1018957
    44 schema:name Humans integrate visual and haptic information in a statistically optimal fashion
    45 schema:pagination 429
    46 schema:productId N2a44c3f752804919ac2226c62a46b74e
    47 N2ea4ab36ddc9431487d2ecedac101ed9
    48 N679f4aa4fa354a549f48c7e9e11ce824
    49 Ne3921745a914490d8bf53a5b4000b0c3
    50 Nee54221b6a2b4c58910bb67629e3deda
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008215698
    52 https://doi.org/10.1038/415429a
    53 schema:sdDatePublished 2019-04-11T12:25
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher Nc6f509ba6da640838147ea231820b458
    56 schema:url https://www.nature.com/articles/415429a
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N1810645b1763465983d65ee6f468d41b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Size Perception
    62 rdf:type schema:DefinedTerm
    63 N23c3492eaa324e0282910172303fada3 schema:issueNumber 6870
    64 rdf:type schema:PublicationIssue
    65 N2a44c3f752804919ac2226c62a46b74e schema:name dimensions_id
    66 schema:value pub.1008215698
    67 rdf:type schema:PropertyValue
    68 N2ea4ab36ddc9431487d2ecedac101ed9 schema:name nlm_unique_id
    69 schema:value 0410462
    70 rdf:type schema:PropertyValue
    71 N360c659781904e66a8dbea9ea76dc0a7 rdf:first sg:person.0575545320.13
    72 rdf:rest rdf:nil
    73 N4f2318cd5d964fc2a42d1b0b155d2760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Touch
    75 rdf:type schema:DefinedTerm
    76 N679f4aa4fa354a549f48c7e9e11ce824 schema:name readcube_id
    77 schema:value 2723e612d7f87efbdc69fee742ff382c7162a6e58b0037c448ed9f5f5f6939e1
    78 rdf:type schema:PropertyValue
    79 N80257bb89dd248bba151b2d9b095abb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Adult
    81 rdf:type schema:DefinedTerm
    82 Nb8431cb54bae4770849f71065d8cdbef schema:volumeNumber 415
    83 rdf:type schema:PublicationVolume
    84 Nc4e578b38ad94a8995a8b5ea9e2fcca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Models, Neurological
    86 rdf:type schema:DefinedTerm
    87 Nc6f509ba6da640838147ea231820b458 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Nd360e6c5832e4ba4966a74863d1de7c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Sensory Thresholds
    91 rdf:type schema:DefinedTerm
    92 Ne3921745a914490d8bf53a5b4000b0c3 schema:name doi
    93 schema:value 10.1038/415429a
    94 rdf:type schema:PropertyValue
    95 Ne7ddea711ba7467f957e7db3768d5841 rdf:first sg:person.01016301243.44
    96 rdf:rest N360c659781904e66a8dbea9ea76dc0a7
    97 Nee54221b6a2b4c58910bb67629e3deda schema:name pubmed_id
    98 schema:value 11807554
    99 rdf:type schema:PropertyValue
    100 Nfd36ba9453e54ee2964de005e395df2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Humans
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Psychology and Cognitive Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Psychology
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1018957 schema:issn 0090-0028
    110 1476-4687
    111 schema:name Nature
    112 rdf:type schema:Periodical
    113 sg:person.01016301243.44 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    114 schema:familyName Ernst
    115 schema:givenName Marc O
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016301243.44
    117 rdf:type schema:Person
    118 sg:person.0575545320.13 schema:familyName Banks
    119 schema:givenName Martin S
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575545320.13
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-1-4757-2076-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036166194
    123 https://doi.org/10.1007/978-1-4757-2076-1
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1023/a:1026557704054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007282318
    126 https://doi.org/10.1023/a:1026557704054
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/71140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041810359
    129 https://doi.org/10.1038/71140
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.3758/bf03202657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023078958
    132 https://doi.org/10.3758/bf03202657
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.3758/bf03209572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000489521
    135 https://doi.org/10.3758/bf03209572
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.3758/bf03343413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021862692
    138 https://doi.org/10.3758/bf03343413
    139 rdf:type schema:CreativeWork
    140 https://app.dimensions.ai/details/publication/pub.1036166194 schema:CreativeWork
    141 https://doi.org/10.1016/0042-6989(93)90037-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1013905364
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/0042-6989(94)00176-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1009462383
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/s0042-6989(97)00179-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009631891
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/s0042-6989(97)00325-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004780403
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/s0166-4115(97)80006-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036719631
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1037/0033-2909.88.3.638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017885181
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1037/0096-1523.7.4.902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032058332
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1037/h0024514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008825444
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1037/h0024766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038615959
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1037/h0074626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026566562
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1068/p090457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058162324
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1068/p120607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058162583
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1068/p2753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058163929
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1098/rspb.1997.0139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005451433
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1111/1467-9280.00270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036825216
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1126/science.1059201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176038
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1126/science.143.3606.594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062481796
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1152/jn.1999.81.3.1355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074267359
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    178 schema:name Vision Science Program, School of Optometry, University of California, Berkeley 94720-2020, USA. marc.ernst@tuebingen.mpg.de
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...