Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hänsch, Immanuel Bloch

ABSTRACT

For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system. More... »

PAGES

39

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/415039a

DOI

http://dx.doi.org/10.1038/415039a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052648436

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11780110


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "*Sektion Physik, Ludwig-Maximilians-Universit\u00e4t, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut f\u00fcr Quantenoptik, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greiner", 
        "givenName": "Markus", 
        "id": "sg:person.0762045276.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762045276.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Sektion Physik, Ludwig-Maximilians-Universit\u00e4t, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut f\u00fcr Quantenoptik, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandel", 
        "givenName": "Olaf", 
        "id": "sg:person.01050725202.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050725202.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "\u2020Quantenelektronik, ETH Z\u00fcrich, 8093 Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esslinger", 
        "givenName": "Tilman", 
        "id": "sg:person.01201447321.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201447321.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Sektion Physik, Ludwig-Maximilians-Universit\u00e4t, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut f\u00fcr Quantenoptik, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4nsch", 
        "givenName": "Theodor W.", 
        "id": "sg:person.011065006675.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011065006675.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "*Sektion Physik, Ludwig-Maximilians-Universit\u00e4t, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut f\u00fcr Quantenoptik, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bloch", 
        "givenName": "Immanuel", 
        "id": "sg:person.01022700764.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022700764.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.59.12184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002390338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.12184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002390338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/26/7/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014728110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1049-250x(08)60186-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1296-2147(01)01178-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017956260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/32354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022717133", 
          "https://doi.org/10.1038/32354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/32354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022717133", 
          "https://doi.org/10.1038/32354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026345988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026345988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.053601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028379594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.053601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028379594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033585534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033585534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.160405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036937707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.160405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036937707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35085500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043075610", 
          "https://doi.org/10.1038/35085500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35085500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043075610", 
          "https://doi.org/10.1038/35085500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047208982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047208982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.r1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.r1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.031401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.031401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.1138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060535598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.1138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060535598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.1542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/22/4/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/9/5/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/415039a", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6867", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "415"
      }
    ], 
    "name": "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms", 
    "pagination": "39", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fac7ff09f23322ae76fce1bb86bf53cab51ffcc3a9608cd087146da8e5f574c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11780110"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/415039a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052648436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/415039a", 
      "https://app.dimensions.ai/details/publication/pub.1052648436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/415039a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/415039a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/415039a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/415039a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/415039a'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/415039a schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N1ea48055b6894ac598df1672a8003218
4 schema:citation sg:pub.10.1038/32354
5 sg:pub.10.1038/35085500
6 https://doi.org/10.1016/s1049-250x(08)60186-x
7 https://doi.org/10.1016/s1296-2147(01)01178-7
8 https://doi.org/10.1103/physreva.56.r1083
9 https://doi.org/10.1103/physreva.63.031401
10 https://doi.org/10.1103/physreva.63.053601
11 https://doi.org/10.1103/physrevb.30.1138
12 https://doi.org/10.1103/physrevb.40.546
13 https://doi.org/10.1103/physrevb.59.12184
14 https://doi.org/10.1103/physrevlett.56.378
15 https://doi.org/10.1103/physrevlett.62.2180
16 https://doi.org/10.1103/physrevlett.63.326
17 https://doi.org/10.1103/physrevlett.69.2971
18 https://doi.org/10.1103/physrevlett.74.1542
19 https://doi.org/10.1103/physrevlett.76.4947
20 https://doi.org/10.1103/physrevlett.81.204
21 https://doi.org/10.1103/physrevlett.81.3108
22 https://doi.org/10.1103/physrevlett.82.1975
23 https://doi.org/10.1103/physrevlett.87.160405
24 https://doi.org/10.1103/revmodphys.71.463
25 https://doi.org/10.1126/science.1058149
26 https://doi.org/10.1209/0295-5075/22/4/004
27 https://doi.org/10.1209/0295-5075/26/7/012
28 https://doi.org/10.1209/0295-5075/9/5/003
29 schema:datePublished 2002-01
30 schema:datePublishedReg 2002-01-01
31 schema:description For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N65ccd211a894451bbeb6300a7354c9f5
36 Nf7b08d94fbc9494686e22e3762325296
37 sg:journal.1018957
38 schema:name Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
39 schema:pagination 39
40 schema:productId N7bafb555afc94a5fb14c468f56f9243d
41 N8f826d6eec57462a9090e9baef28406b
42 N940c43241a964f0ebdb25c1b4a187909
43 Ncad44f9b56014aaa86dbcfb974d98b8e
44 Nd6c8c50111de40c6846a3e92808e6e80
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052648436
46 https://doi.org/10.1038/415039a
47 schema:sdDatePublished 2019-04-11T12:27
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N677c8336ed334414a46fca9162d08630
50 schema:url https://www.nature.com/articles/415039a
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N12f217ccdc37456d9d4ef030f756c3e4 schema:name *Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
55 rdf:type schema:Organization
56 N1ea48055b6894ac598df1672a8003218 rdf:first sg:person.0762045276.35
57 rdf:rest N894a233964654bd6bec4fd034132991a
58 N20d48484abc94ae4b71bf4e4e4d85ea3 schema:name *Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
59 rdf:type schema:Organization
60 N28c38084eff24bf0b9b5d6e7535fff2a schema:name *Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
61 rdf:type schema:Organization
62 N592cd55383954290ade8cf689c4fb573 schema:name *Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
63 rdf:type schema:Organization
64 N65ccd211a894451bbeb6300a7354c9f5 schema:issueNumber 6867
65 rdf:type schema:PublicationIssue
66 N677c8336ed334414a46fca9162d08630 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N7bafb555afc94a5fb14c468f56f9243d schema:name pubmed_id
69 schema:value 11780110
70 rdf:type schema:PropertyValue
71 N894a233964654bd6bec4fd034132991a rdf:first sg:person.01050725202.00
72 rdf:rest Na743539dcf9349f98498ce9994b2d32c
73 N8a3dff34f310423ab2d8b9506475b10d rdf:first sg:person.01022700764.47
74 rdf:rest rdf:nil
75 N8f826d6eec57462a9090e9baef28406b schema:name readcube_id
76 schema:value fac7ff09f23322ae76fce1bb86bf53cab51ffcc3a9608cd087146da8e5f574c4
77 rdf:type schema:PropertyValue
78 N940c43241a964f0ebdb25c1b4a187909 schema:name doi
79 schema:value 10.1038/415039a
80 rdf:type schema:PropertyValue
81 Na743539dcf9349f98498ce9994b2d32c rdf:first sg:person.01201447321.69
82 rdf:rest Nc95109b92736446fbf18c306bff22c15
83 Nc95109b92736446fbf18c306bff22c15 rdf:first sg:person.011065006675.38
84 rdf:rest N8a3dff34f310423ab2d8b9506475b10d
85 Ncad44f9b56014aaa86dbcfb974d98b8e schema:name dimensions_id
86 schema:value pub.1052648436
87 rdf:type schema:PropertyValue
88 Nd6c8c50111de40c6846a3e92808e6e80 schema:name nlm_unique_id
89 schema:value 0410462
90 rdf:type schema:PropertyValue
91 Nf7b08d94fbc9494686e22e3762325296 schema:volumeNumber 415
92 rdf:type schema:PublicationVolume
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
97 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
98 rdf:type schema:DefinedTerm
99 sg:journal.1018957 schema:issn 0090-0028
100 1476-4687
101 schema:name Nature
102 rdf:type schema:Periodical
103 sg:person.01022700764.47 schema:affiliation N28c38084eff24bf0b9b5d6e7535fff2a
104 schema:familyName Bloch
105 schema:givenName Immanuel
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022700764.47
107 rdf:type schema:Person
108 sg:person.01050725202.00 schema:affiliation N12f217ccdc37456d9d4ef030f756c3e4
109 schema:familyName Mandel
110 schema:givenName Olaf
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050725202.00
112 rdf:type schema:Person
113 sg:person.011065006675.38 schema:affiliation N20d48484abc94ae4b71bf4e4e4d85ea3
114 schema:familyName Hänsch
115 schema:givenName Theodor W.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011065006675.38
117 rdf:type schema:Person
118 sg:person.01201447321.69 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
119 schema:familyName Esslinger
120 schema:givenName Tilman
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201447321.69
122 rdf:type schema:Person
123 sg:person.0762045276.35 schema:affiliation N592cd55383954290ade8cf689c4fb573
124 schema:familyName Greiner
125 schema:givenName Markus
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762045276.35
127 rdf:type schema:Person
128 sg:pub.10.1038/32354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022717133
129 https://doi.org/10.1038/32354
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/35085500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043075610
132 https://doi.org/10.1038/35085500
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s1049-250x(08)60186-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109190
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s1296-2147(01)01178-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017956260
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreva.56.r1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493369
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreva.63.031401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496966
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreva.63.053601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028379594
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.30.1138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060535598
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.40.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552112
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.59.12184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002390338
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.56.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793456
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.62.2180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798719
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.63.326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799893
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.69.2971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805666
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.74.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810424
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.76.4947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813435
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.81.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818032
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.81.3108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033585534
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.82.1975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026345988
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.87.160405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036937707
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/revmodphys.71.463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047208982
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.1058149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444393
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1209/0295-5075/22/4/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229488
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1209/0295-5075/26/7/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014728110
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1209/0295-5075/9/5/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233005
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
181 schema:name †Quantenelektronik, ETH Zürich, 8093 Zurich, Switzerland
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...