Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

Zhigang Zou, Jinhua Ye, Kazuhiro Sayama, Hironori Arakawa

ABSTRACT

The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting1, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide2, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light3,4,5,6,7, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In1-xNixTaO4 (x = 0–0.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for ‘clean’ hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites. More... »

PAGES

625-627

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/414625a

DOI

http://dx.doi.org/10.1038/414625a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021078572

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11740556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Zhigang", 
        "id": "sg:person.01265755501.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265755501.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, 305-0047, Tsukuba, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, 305-0047, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jinhua", 
        "id": "sg:person.01252301105.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252301105.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayama", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.016006227243.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006227243.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arakawa", 
        "givenName": "Hironori", 
        "id": "sg:person.010372611121.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372611121.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/286474a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041759130", 
          "https://doi.org/10.1038/286474a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting1, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide2, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light3,4,5,6,7, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In1-xNixTaO4 (x = 0\u20130.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for \u2018clean\u2019 hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/414625a", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6864", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "414"
      }
    ], 
    "keywords": [
      "visible light irradiation", 
      "light irradiation", 
      "solar energy", 
      "hydrogen fuel", 
      "oxide semiconductor photocatalysts", 
      "direct splitting", 
      "series of photocatalysts", 
      "photocatalytic water splitting", 
      "water splitting", 
      "incoming solar energy", 
      "photocatalytic splitting", 
      "semiconductor photocatalysts", 
      "surface sites", 
      "first photocatalysts", 
      "photocatalyst", 
      "stoichiometric amounts", 
      "carbon dioxide2", 
      "catalytic efficiency", 
      "quantum yield", 
      "carbohydrate compounds", 
      "surface area", 
      "hydrogen production", 
      "renewable sources", 
      "nickel yields", 
      "ultraviolet light", 
      "hydrogen", 
      "semiconductor systems", 
      "oxygen", 
      "splitting", 
      "water", 
      "overall process", 
      "fuel", 
      "catalyst", 
      "irradiation", 
      "yield", 
      "energy", 
      "practical use", 
      "compounds", 
      "doping", 
      "suitable modifications", 
      "oxide", 
      "viable source", 
      "considerable effort", 
      "modification", 
      "system", 
      "efficiency", 
      "series", 
      "source", 
      "amount", 
      "light", 
      "process", 
      "sites", 
      "use", 
      "plants", 
      "production", 
      "area", 
      "reasons", 
      "decades", 
      "efforts", 
      "findings", 
      "water splitting1", 
      "splitting1", 
      "dioxide2", 
      "In1-xNixTaO4"
    ], 
    "name": "Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst", 
    "pagination": "625-627", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021078572"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/414625a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11740556"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/414625a", 
      "https://app.dimensions.ai/details/publication/pub.1021078572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_312.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/414625a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/414625a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/414625a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/414625a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/414625a'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      22 PREDICATES      97 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/414625a schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 anzsrc-for:09
5 anzsrc-for:0907
6 anzsrc-for:0912
7 schema:author N3f4cf50732ed453faadbab2bd644a68b
8 schema:citation sg:pub.10.1038/238037a0
9 sg:pub.10.1038/286474a0
10 schema:datePublished 2001-12
11 schema:datePublishedReg 2001-12-01
12 schema:description The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting1, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide2, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light3,4,5,6,7, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In1-xNixTaO4 (x = 0–0.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for ‘clean’ hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N996369e35c00420fb668ab88280e2a05
17 Ned1526eb00fc47efb6fbb14354d33e55
18 sg:journal.1018957
19 schema:keywords In1-xNixTaO4
20 amount
21 area
22 carbohydrate compounds
23 carbon dioxide2
24 catalyst
25 catalytic efficiency
26 compounds
27 considerable effort
28 decades
29 dioxide2
30 direct splitting
31 doping
32 efficiency
33 efforts
34 energy
35 findings
36 first photocatalysts
37 fuel
38 hydrogen
39 hydrogen fuel
40 hydrogen production
41 incoming solar energy
42 irradiation
43 light
44 light irradiation
45 modification
46 nickel yields
47 overall process
48 oxide
49 oxide semiconductor photocatalysts
50 oxygen
51 photocatalyst
52 photocatalytic splitting
53 photocatalytic water splitting
54 plants
55 practical use
56 process
57 production
58 quantum yield
59 reasons
60 renewable sources
61 semiconductor photocatalysts
62 semiconductor systems
63 series
64 series of photocatalysts
65 sites
66 solar energy
67 source
68 splitting
69 splitting1
70 stoichiometric amounts
71 suitable modifications
72 surface area
73 surface sites
74 system
75 ultraviolet light
76 use
77 viable source
78 visible light irradiation
79 water
80 water splitting
81 water splitting1
82 yield
83 schema:name Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst
84 schema:pagination 625-627
85 schema:productId N151d2a1da5234cf595a9007a342b52d2
86 N2e1450863afa4797b8bb0896f3919241
87 N4bf70cbe319a4828bfb3bec4d59dcd9d
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078572
89 https://doi.org/10.1038/414625a
90 schema:sdDatePublished 2022-01-01T18:09
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N1ca9e03b33354320889ef2642f3afc92
93 schema:url https://doi.org/10.1038/414625a
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N151d2a1da5234cf595a9007a342b52d2 schema:name doi
98 schema:value 10.1038/414625a
99 rdf:type schema:PropertyValue
100 N19f8e071aad64990a1292ae4e674cc9c rdf:first sg:person.010372611121.56
101 rdf:rest rdf:nil
102 N1ca9e03b33354320889ef2642f3afc92 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N2e1450863afa4797b8bb0896f3919241 schema:name dimensions_id
105 schema:value pub.1021078572
106 rdf:type schema:PropertyValue
107 N375a6c54be7045a989cbfb7d154ee60c rdf:first sg:person.01252301105.84
108 rdf:rest N85e7f3a1bb824a949af8829c4cffcee6
109 N3f4cf50732ed453faadbab2bd644a68b rdf:first sg:person.01265755501.27
110 rdf:rest N375a6c54be7045a989cbfb7d154ee60c
111 N4bf70cbe319a4828bfb3bec4d59dcd9d schema:name pubmed_id
112 schema:value 11740556
113 rdf:type schema:PropertyValue
114 N85e7f3a1bb824a949af8829c4cffcee6 rdf:first sg:person.016006227243.70
115 rdf:rest N19f8e071aad64990a1292ae4e674cc9c
116 N996369e35c00420fb668ab88280e2a05 schema:issueNumber 6864
117 rdf:type schema:PublicationIssue
118 Ned1526eb00fc47efb6fbb14354d33e55 schema:volumeNumber 414
119 rdf:type schema:PublicationVolume
120 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
121 schema:name Chemical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
124 schema:name Inorganic Chemistry
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Chemistry (incl. Structural)
128 rdf:type schema:DefinedTerm
129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
130 schema:name Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
133 schema:name Environmental Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
136 schema:name Materials Engineering
137 rdf:type schema:DefinedTerm
138 sg:journal.1018957 schema:issn 0028-0836
139 1476-4687
140 schema:name Nature
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.010372611121.56 schema:affiliation grid-institutes:grid.208504.b
144 schema:familyName Arakawa
145 schema:givenName Hironori
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372611121.56
147 rdf:type schema:Person
148 sg:person.01252301105.84 schema:affiliation grid-institutes:grid.21941.3f
149 schema:familyName Ye
150 schema:givenName Jinhua
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252301105.84
152 rdf:type schema:Person
153 sg:person.01265755501.27 schema:affiliation grid-institutes:grid.208504.b
154 schema:familyName Zou
155 schema:givenName Zhigang
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265755501.27
157 rdf:type schema:Person
158 sg:person.016006227243.70 schema:affiliation grid-institutes:grid.208504.b
159 schema:familyName Sayama
160 schema:givenName Kazuhiro
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006227243.70
162 rdf:type schema:Person
163 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
164 https://doi.org/10.1038/238037a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/286474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041759130
167 https://doi.org/10.1038/286474a0
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.208504.b schema:alternateName Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan
170 schema:name Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, 305-8565, Tsukuba, Ibaraki, Japan
171 rdf:type schema:Organization
172 grid-institutes:grid.21941.3f schema:alternateName Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, 305-0047, Tsukuba, Ibaraki, Japan
173 schema:name Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, 305-0047, Tsukuba, Ibaraki, Japan
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...