Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

Zhigang Zou, Jinhua Ye, Kazuhiro Sayama, Hironori Arakawa

ABSTRACT

The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In(1-x)Ni(x)TaO(4) (x = 0-0.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for 'clean' hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites. More... »

PAGES

625

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/414625a

DOI

http://dx.doi.org/10.1038/414625a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021078572

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11740556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "*Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Zhigang", 
        "id": "sg:person.01265755501.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265755501.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "\u2020Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jinhua", 
        "id": "sg:person.01252301105.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252301105.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "*Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayama", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.016006227243.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006227243.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "*Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arakawa", 
        "givenName": "Hironori", 
        "id": "sg:person.010372611121.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372611121.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0009-2614(00)01265-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002426615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a902892g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012880993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/f29817700643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015361375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5940/jcrsj.27.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019648101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/286474a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041759130", 
          "https://doi.org/10.1038/286474a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9517(89)90274-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045260628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00035a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053980654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm000687m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055408016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm000687m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055408016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm990577j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055419817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm990577j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055419817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100111a039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055653372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100147a038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055654943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00025a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055700082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9625319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056122986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9625319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056122986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.1998.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064485827"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In(1-x)Ni(x)TaO(4) (x = 0-0.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for 'clean' hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/414625a", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6864", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "414"
      }
    ], 
    "name": "Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst", 
    "pagination": "625", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "646dfb7a4615c2e0aec9a9fd407c583590b639ad43278227fac1c64ef3531b49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11740556"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/414625a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021078572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/414625a", 
      "https://app.dimensions.ai/details/publication/pub.1021078572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53981_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/414625a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/414625a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/414625a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/414625a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/414625a'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/414625a schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N12cfed8c49dc4eb5b4f39e409d002ab4
4 schema:citation sg:pub.10.1038/238037a0
5 sg:pub.10.1038/286474a0
6 https://doi.org/10.1016/0021-9517(89)90274-1
7 https://doi.org/10.1016/s0009-2614(00)01265-3
8 https://doi.org/10.1021/cm000687m
9 https://doi.org/10.1021/cm990577j
10 https://doi.org/10.1021/cr00035a013
11 https://doi.org/10.1021/j100111a039
12 https://doi.org/10.1021/j100147a038
13 https://doi.org/10.1021/ja00025a021
14 https://doi.org/10.1021/jp9625319
15 https://doi.org/10.1039/a902892g
16 https://doi.org/10.1039/f29817700643
17 https://doi.org/10.1246/cl.1998.1027
18 https://doi.org/10.5940/jcrsj.27.23
19 schema:datePublished 2001-12
20 schema:datePublishedReg 2001-12-01
21 schema:description The photocatalytic splitting of water into hydrogen and oxygen using solar energy is a potentially clean and renewable source for hydrogen fuel. The first photocatalysts suitable for water splitting, or for activating hydrogen production from carbohydrate compounds made by plants from water and carbon dioxide, were developed several decades ago. But these catalysts operate with ultraviolet light, which accounts for only 4% of the incoming solar energy and thus renders the overall process impractical. For this reason, considerable efforts have been invested in developing photocatalysts capable of using the less energetic but more abundant visible light, which accounts for about 43% of the incoming solar energy. However, systems that are sufficiently stable and efficient for practical use have not yet been realized. Here we show that doping of indium-tantalum-oxide with nickel yields a series of photocatalysts, In(1-x)Ni(x)TaO(4) (x = 0-0.2), which induces direct splitting of water into stoichiometric amounts of oxygen and hydrogen under visible light irradiation with a quantum yield of about 0.66%. Our findings suggest that the use of solar energy for photocatalytic water splitting might provide a viable source for 'clean' hydrogen fuel, once the catalytic efficiency of the semiconductor system has been improved by increasing its surface area and suitable modifications of the surface sites.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N49dff27d2ce24f678bee652df6256b5e
26 Nd6dfaab011f64092aaa550e4d3e33d8a
27 sg:journal.1018957
28 schema:name Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst
29 schema:pagination 625
30 schema:productId N1242bfb3db6949f79ac5824824d3cd82
31 N42eb44407b554179afdfcc7f5b0ef1ce
32 N7c7555956bcf4411a06d782e238462f7
33 N8fceeae2be5f483caee8567d94677800
34 Nfb0037af6ce342619407e6266af5751f
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078572
36 https://doi.org/10.1038/414625a
37 schema:sdDatePublished 2019-04-11T12:11
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N8a29d3e3b0d44d2eac331da5a5c2a293
40 schema:url https://www.nature.com/articles/414625a
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1242bfb3db6949f79ac5824824d3cd82 schema:name pubmed_id
45 schema:value 11740556
46 rdf:type schema:PropertyValue
47 N12cfed8c49dc4eb5b4f39e409d002ab4 rdf:first sg:person.01265755501.27
48 rdf:rest Nc2fc55d3525a4d1a8f4dffd634b3c9cf
49 N42eb44407b554179afdfcc7f5b0ef1ce schema:name readcube_id
50 schema:value 646dfb7a4615c2e0aec9a9fd407c583590b639ad43278227fac1c64ef3531b49
51 rdf:type schema:PropertyValue
52 N49dff27d2ce24f678bee652df6256b5e schema:volumeNumber 414
53 rdf:type schema:PublicationVolume
54 N67353d04ea084790bea49f75ed14f198 rdf:first sg:person.016006227243.70
55 rdf:rest N8a04e88800904c50ba16412119c1ccb8
56 N7c7555956bcf4411a06d782e238462f7 schema:name doi
57 schema:value 10.1038/414625a
58 rdf:type schema:PropertyValue
59 N8a04e88800904c50ba16412119c1ccb8 rdf:first sg:person.010372611121.56
60 rdf:rest rdf:nil
61 N8a29d3e3b0d44d2eac331da5a5c2a293 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N8fceeae2be5f483caee8567d94677800 schema:name nlm_unique_id
64 schema:value 0410462
65 rdf:type schema:PropertyValue
66 Nc2fc55d3525a4d1a8f4dffd634b3c9cf rdf:first sg:person.01252301105.84
67 rdf:rest N67353d04ea084790bea49f75ed14f198
68 Nd6dfaab011f64092aaa550e4d3e33d8a schema:issueNumber 6864
69 rdf:type schema:PublicationIssue
70 Nfb0037af6ce342619407e6266af5751f schema:name dimensions_id
71 schema:value pub.1021078572
72 rdf:type schema:PropertyValue
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:journal.1018957 schema:issn 0090-0028
80 1476-4687
81 schema:name Nature
82 rdf:type schema:Periodical
83 sg:person.010372611121.56 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
84 schema:familyName Arakawa
85 schema:givenName Hironori
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010372611121.56
87 rdf:type schema:Person
88 sg:person.01252301105.84 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
89 schema:familyName Ye
90 schema:givenName Jinhua
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252301105.84
92 rdf:type schema:Person
93 sg:person.01265755501.27 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
94 schema:familyName Zou
95 schema:givenName Zhigang
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265755501.27
97 rdf:type schema:Person
98 sg:person.016006227243.70 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
99 schema:familyName Sayama
100 schema:givenName Kazuhiro
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006227243.70
102 rdf:type schema:Person
103 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
104 https://doi.org/10.1038/238037a0
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/286474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041759130
107 https://doi.org/10.1038/286474a0
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0021-9517(89)90274-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045260628
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0009-2614(00)01265-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002426615
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/cm000687m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055408016
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/cm990577j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055419817
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/cr00035a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980654
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/j100111a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055653372
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/j100147a038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055654943
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/ja00025a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055700082
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/jp9625319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056122986
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1039/a902892g schema:sameAs https://app.dimensions.ai/details/publication/pub.1012880993
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1039/f29817700643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015361375
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1246/cl.1998.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064485827
132 rdf:type schema:CreativeWork
133 https://doi.org/10.5940/jcrsj.27.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019648101
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
136 schema:name *Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
139 schema:name †Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...