Electrical control of spin coherence in semiconductor nanostructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, D. D. Awschalom

ABSTRACT

The processing of quantum information based on the electron spin degree of freedom requires fast and coherent manipulation of local spins. One approach is to provide spatially selective tuning of the spin splitting--which depends on the g-factor--by using magnetic fields, but this requires their precise control at reduced length scales. Alternative proposals employ electrical gating and spin engineering in semiconductor heterostructures involving materials with different g-factors. Here we show that spin coherence can be controlled in a specially designed AlxGa1-xAs quantum well in which the Al concentration x is gradually varied across the structure. Application of an electric field leads to a displacement of the electron wavefunction within the quantum well, and because the electron g-factor varies strongly with x, the spin splitting is therefore also changed. Using time-resolved optical techniques, we demonstrate gate-voltage-mediated control of coherent spin precession over a 13-GHz frequency range in a fixed magnetic field of 6 T, including complete suppression of precession, reversal of the sign of g, and operation up to room temperature. More... »

PAGES

619

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/414619a

DOI

http://dx.doi.org/10.1038/414619a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027686968

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11740554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "*Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salis", 
        "givenName": "G.", 
        "id": "sg:person.01127026255.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127026255.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "*Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Y.", 
        "id": "sg:person.015033247531.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033247531.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "*Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA", 
            "\u2020Solid State Physics, ETH Z\u00fcrich, 8093 Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ensslin", 
        "givenName": "K.", 
        "id": "sg:person.010553577775.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553577775.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "*Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Driscoll", 
        "givenName": "D. C.", 
        "id": "sg:person.01232540573.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232540573.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "*Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gossard", 
        "givenName": "A. C.", 
        "id": "sg:person.0772322701.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772322701.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "*Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awschalom", 
        "givenName": "D. D.", 
        "id": "sg:person.01024231643.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024231643.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.64.041307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007977727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.041307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007977727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(97)00009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009126552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.370481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013946885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768319", 
          "https://doi.org/10.1038/30156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768319", 
          "https://doi.org/10.1038/30156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.113387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057660935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.15.816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060522673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.15.816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060522673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.5443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.5443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.11345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.11345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.5106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.5106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1986.1073165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061305510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5330.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5496.1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572217"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "The processing of quantum information based on the electron spin degree of freedom requires fast and coherent manipulation of local spins. One approach is to provide spatially selective tuning of the spin splitting--which depends on the g-factor--by using magnetic fields, but this requires their precise control at reduced length scales. Alternative proposals employ electrical gating and spin engineering in semiconductor heterostructures involving materials with different g-factors. Here we show that spin coherence can be controlled in a specially designed AlxGa1-xAs quantum well in which the Al concentration x is gradually varied across the structure. Application of an electric field leads to a displacement of the electron wavefunction within the quantum well, and because the electron g-factor varies strongly with x, the spin splitting is therefore also changed. Using time-resolved optical techniques, we demonstrate gate-voltage-mediated control of coherent spin precession over a 13-GHz frequency range in a fixed magnetic field of 6 T, including complete suppression of precession, reversal of the sign of g, and operation up to room temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/414619a", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6864", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "414"
      }
    ], 
    "name": "Electrical control of spin coherence in semiconductor nanostructures", 
    "pagination": "619", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83e5500959e8672fb8d89424094e46de4600616cb68369c78391d67e581d0265"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11740554"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/414619a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027686968"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/414619a", 
      "https://app.dimensions.ai/details/publication/pub.1027686968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54014_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/414619a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/414619a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/414619a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/414619a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/414619a'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      48 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/414619a schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb98ded42624c438b9488e03521e26418
4 schema:citation sg:pub.10.1038/30156
5 https://doi.org/10.1016/s0038-1098(97)00009-4
6 https://doi.org/10.1063/1.113387
7 https://doi.org/10.1063/1.370481
8 https://doi.org/10.1103/physreva.57.120
9 https://doi.org/10.1103/physrevb.15.816
10 https://doi.org/10.1103/physrevb.32.5443
11 https://doi.org/10.1103/physrevb.37.1364
12 https://doi.org/10.1103/physrevb.44.11345
13 https://doi.org/10.1103/physrevb.49.14786
14 https://doi.org/10.1103/physrevb.64.041307
15 https://doi.org/10.1103/physrevlett.53.2173
16 https://doi.org/10.1103/physrevlett.74.2315
17 https://doi.org/10.1103/physrevlett.78.1355
18 https://doi.org/10.1103/physrevlett.79.5106
19 https://doi.org/10.1103/physrevlett.86.1634
20 https://doi.org/10.1109/jqe.1986.1073165
21 https://doi.org/10.1126/science.277.5330.1284
22 https://doi.org/10.1126/science.290.5496.1546
23 schema:datePublished 2001-12
24 schema:datePublishedReg 2001-12-01
25 schema:description The processing of quantum information based on the electron spin degree of freedom requires fast and coherent manipulation of local spins. One approach is to provide spatially selective tuning of the spin splitting--which depends on the g-factor--by using magnetic fields, but this requires their precise control at reduced length scales. Alternative proposals employ electrical gating and spin engineering in semiconductor heterostructures involving materials with different g-factors. Here we show that spin coherence can be controlled in a specially designed AlxGa1-xAs quantum well in which the Al concentration x is gradually varied across the structure. Application of an electric field leads to a displacement of the electron wavefunction within the quantum well, and because the electron g-factor varies strongly with x, the spin splitting is therefore also changed. Using time-resolved optical techniques, we demonstrate gate-voltage-mediated control of coherent spin precession over a 13-GHz frequency range in a fixed magnetic field of 6 T, including complete suppression of precession, reversal of the sign of g, and operation up to room temperature.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N03784f20d6d44a3f890f76a27fcf28c4
30 N0b342a2a363a467aaf60edda5e943387
31 sg:journal.1018957
32 schema:name Electrical control of spin coherence in semiconductor nanostructures
33 schema:pagination 619
34 schema:productId N04f0065104a448ecbfa7d770e47a9a85
35 N46b0721ef80a49659d4f4eee1a2951a7
36 Ne220b724fd494f2aba21f9e11b4c32c7
37 Ne8fe5a6a9a03433e83c81c5c4cdac0f7
38 Nf6d3dcb181cb43b4acba71b1713a03ce
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027686968
40 https://doi.org/10.1038/414619a
41 schema:sdDatePublished 2019-04-11T12:15
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N61b0a04069e744ccb4a352c67a78768d
44 schema:url https://www.nature.com/articles/414619a
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N03784f20d6d44a3f890f76a27fcf28c4 schema:issueNumber 6864
49 rdf:type schema:PublicationIssue
50 N04f0065104a448ecbfa7d770e47a9a85 schema:name pubmed_id
51 schema:value 11740554
52 rdf:type schema:PropertyValue
53 N0b342a2a363a467aaf60edda5e943387 schema:volumeNumber 414
54 rdf:type schema:PublicationVolume
55 N1ca8cd85ae3e40738802ce12848b5217 rdf:first sg:person.010553577775.14
56 rdf:rest Nb051ea80b9b046939fd5e83dcf37287e
57 N26106394e7934d209dd4baee79a585e9 rdf:first sg:person.0772322701.64
58 rdf:rest Nb6c89d99ac424d9b9c1b5ad5407b9d25
59 N46b0721ef80a49659d4f4eee1a2951a7 schema:name readcube_id
60 schema:value 83e5500959e8672fb8d89424094e46de4600616cb68369c78391d67e581d0265
61 rdf:type schema:PropertyValue
62 N61b0a04069e744ccb4a352c67a78768d schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nb051ea80b9b046939fd5e83dcf37287e rdf:first sg:person.01232540573.85
65 rdf:rest N26106394e7934d209dd4baee79a585e9
66 Nb6c89d99ac424d9b9c1b5ad5407b9d25 rdf:first sg:person.01024231643.99
67 rdf:rest rdf:nil
68 Nb98ded42624c438b9488e03521e26418 rdf:first sg:person.01127026255.72
69 rdf:rest Ne102f0947cc942ae8b0576df3f4497a5
70 Ne102f0947cc942ae8b0576df3f4497a5 rdf:first sg:person.015033247531.51
71 rdf:rest N1ca8cd85ae3e40738802ce12848b5217
72 Ne220b724fd494f2aba21f9e11b4c32c7 schema:name doi
73 schema:value 10.1038/414619a
74 rdf:type schema:PropertyValue
75 Ne8fe5a6a9a03433e83c81c5c4cdac0f7 schema:name dimensions_id
76 schema:value pub.1027686968
77 rdf:type schema:PropertyValue
78 Nf6d3dcb181cb43b4acba71b1713a03ce schema:name nlm_unique_id
79 schema:value 0410462
80 rdf:type schema:PropertyValue
81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
85 schema:name Other Physical Sciences
86 rdf:type schema:DefinedTerm
87 sg:journal.1018957 schema:issn 0090-0028
88 1476-4687
89 schema:name Nature
90 rdf:type schema:Periodical
91 sg:person.01024231643.99 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
92 schema:familyName Awschalom
93 schema:givenName D. D.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024231643.99
95 rdf:type schema:Person
96 sg:person.010553577775.14 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
97 schema:familyName Ensslin
98 schema:givenName K.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553577775.14
100 rdf:type schema:Person
101 sg:person.01127026255.72 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
102 schema:familyName Salis
103 schema:givenName G.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127026255.72
105 rdf:type schema:Person
106 sg:person.01232540573.85 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
107 schema:familyName Driscoll
108 schema:givenName D. C.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232540573.85
110 rdf:type schema:Person
111 sg:person.015033247531.51 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
112 schema:familyName Kato
113 schema:givenName Y.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033247531.51
115 rdf:type schema:Person
116 sg:person.0772322701.64 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
117 schema:familyName Gossard
118 schema:givenName A. C.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772322701.64
120 rdf:type schema:Person
121 sg:pub.10.1038/30156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040768319
122 https://doi.org/10.1038/30156
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0038-1098(97)00009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009126552
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.113387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057660935
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.370481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013946885
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreva.57.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023467
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.15.816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060522673
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.32.5443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538622
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.37.1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545040
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.44.11345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060558631
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.49.14786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570109
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.64.041307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007977727
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.53.2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790725
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.74.2315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810617
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.78.1355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814731
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.79.5106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816460
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.86.1634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822602
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/jqe.1986.1073165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305510
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.277.5330.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557830
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.290.5496.1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572217
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
161 schema:name *Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
164 schema:name *Center for Spintronics and Quantum Computing, University of California, Santa Barbara, California 93106, USA
165 †Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...