Transport, docking and exocytosis of single secretory granules in live chromaffin cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-07

AUTHORS

J. A. Steyer, H. Horstmann, W. Almers

ABSTRACT

Neurons maintain a limited pool of synaptic vesicles which are docked at active zones and are awaiting exocytosis1,2,3,4. By contrast, endocrine cells releasing large, dense-core secretory granules have no active zones, and there is disagreement about the size5 and even the existence6 of the docked pool. It is not known how, and how rapidly, secretory vesicles are replaced at exocytic sites in either neurons or endocrine cells. By using electron microscopy, we have now been able to identify a pool of docked granules in chromaffin cells that is selectively depleted when cells secrete. With evanescent-wave fluorescence microscopy7, we observed single granules undergoing exocytosis and leaving behind patches of bare plasmalemma. Fresh granules travelled to the plasmalemma at a top speed of 114 nm s−1, taking an average of 6 min to arrive. On arrival, their motility diminished 4-fold, probably as a result of docking. Some granules detached and returned to the cytosol. We conclude that a large pool of docked granules turns over slowly, that granules move actively to their docking sites, that docking is reversible, and that the ‘rapidly releasable pool’ measured electrophysiologically represents a small subset of docked granules. More... »

PAGES

474-478

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/41329

DOI

http://dx.doi.org/10.1038/41329

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013831002

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9242406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acridine Orange", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromaffin Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoplasmic Granules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytosol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exocytosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescent Dyes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stimulation, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.414703.5", 
          "name": [
            "Max-Planck-Institut f\u00fcr medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steyer", 
        "givenName": "J. A.", 
        "id": "sg:person.01355347603.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355347603.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.414703.5", 
          "name": [
            "Max-Planck-Institut f\u00fcr medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horstmann", 
        "givenName": "H.", 
        "id": "sg:person.01365303303.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365303303.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.414703.5", 
          "name": [
            "Max-Planck-Institut f\u00fcr medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Almers", 
        "givenName": "W.", 
        "id": "sg:person.0605675002.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605675002.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-1229-9_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002102818", 
          "https://doi.org/10.1007/978-1-4419-1229-9_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375493a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011789082", 
          "https://doi.org/10.1038/375493a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-07", 
    "datePublishedReg": "1997-07-01", 
    "description": "Neurons maintain a limited pool of synaptic vesicles which are docked at active zones and are awaiting exocytosis1,2,3,4. By contrast, endocrine cells releasing large, dense-core secretory granules have no active zones, and there is disagreement about the size5 and even the existence6 of the docked pool. It is not known how, and how rapidly, secretory vesicles are replaced at exocytic sites in either neurons or endocrine cells. By using electron microscopy, we have now been able to identify a pool of docked granules in chromaffin cells that is selectively depleted when cells secrete. With evanescent-wave fluorescence microscopy7, we observed single granules undergoing exocytosis and leaving behind patches of bare plasmalemma. Fresh granules travelled to the plasmalemma at a top speed of 114 nm s\u22121, taking an average of 6 min to arrive. On arrival, their motility diminished 4-fold, probably as a result of docking. Some granules detached and returned to the cytosol. We conclude that a large pool of docked granules turns over slowly, that granules move actively to their docking sites, that docking is reversible, and that the \u2018rapidly releasable pool\u2019 measured electrophysiologically represents a small subset of docked granules.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/41329", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6641", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "388"
      }
    ], 
    "keywords": [
      "endocrine cells", 
      "chromaffin cells", 
      "secretory granules", 
      "dense-core secretory granules", 
      "releasable pool", 
      "synaptic vesicles", 
      "neurons", 
      "cells", 
      "active zone", 
      "live chromaffin cells", 
      "granules", 
      "secretory vesicles", 
      "small subset", 
      "exocytosis", 
      "single secretory granules", 
      "limited pool", 
      "motility", 
      "vesicles", 
      "results of docking", 
      "pool", 
      "min", 
      "fresh granules", 
      "subset", 
      "sites", 
      "cytosol", 
      "docking", 
      "large pool", 
      "contrast", 
      "plasmalemma", 
      "single granules", 
      "docking site", 
      "average", 
      "exocytic sites", 
      "patches", 
      "results", 
      "disagreement", 
      "electron microscopy", 
      "arrival", 
      "microscopy", 
      "transport", 
      "zone", 
      "speed", 
      "top speed", 
      "size5", 
      "existence6", 
      "evanescent-wave fluorescence microscopy7", 
      "fluorescence microscopy7", 
      "microscopy7", 
      "bare plasmalemma"
    ], 
    "name": "Transport, docking and exocytosis of single secretory granules in live chromaffin cells", 
    "pagination": "474-478", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013831002"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/41329"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9242406"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/41329", 
      "https://app.dimensions.ai/details/publication/pub.1013831002"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_274.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/41329"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/41329'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/41329'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/41329'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/41329'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      22 PREDICATES      92 URIs      82 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/41329 schema:about N017489fc9c9342e88cd6beea617f5afa
2 N10acb2be0b0143faad7f8876e12dac82
3 N21fb08781d4d4c3a967533024a7bf4c7
4 N5e620341dd8f4bd18061c9d029b4651e
5 N777e3322db8d4647ac6c0cdef9a72ac8
6 N7afce90b5e804a9293b34e174db1e6f3
7 N7d6139443dea47ee87688b37d85a8b36
8 N8b1aa0a0d4af49aa8d8cb83ecd73edd8
9 Nc41045ea5ca94da7a5117a134e8ec90b
10 Nd16d0152ae164f368c3747f1d249b105
11 Nd51c534b437c448d89c150a7560139ce
12 Ndd31bdb727e44a698277dbc6df590056
13 Ndd412677f9df4553b144cbff57a240ed
14 Nf3ec7d5742994276896edad78e744fea
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author Ne23d1913a019450e8824caba96d60cc9
18 schema:citation sg:pub.10.1007/978-1-4419-1229-9_11
19 sg:pub.10.1038/375493a0
20 schema:datePublished 1997-07
21 schema:datePublishedReg 1997-07-01
22 schema:description Neurons maintain a limited pool of synaptic vesicles which are docked at active zones and are awaiting exocytosis1,2,3,4. By contrast, endocrine cells releasing large, dense-core secretory granules have no active zones, and there is disagreement about the size5 and even the existence6 of the docked pool. It is not known how, and how rapidly, secretory vesicles are replaced at exocytic sites in either neurons or endocrine cells. By using electron microscopy, we have now been able to identify a pool of docked granules in chromaffin cells that is selectively depleted when cells secrete. With evanescent-wave fluorescence microscopy7, we observed single granules undergoing exocytosis and leaving behind patches of bare plasmalemma. Fresh granules travelled to the plasmalemma at a top speed of 114 nm s−1, taking an average of 6 min to arrive. On arrival, their motility diminished 4-fold, probably as a result of docking. Some granules detached and returned to the cytosol. We conclude that a large pool of docked granules turns over slowly, that granules move actively to their docking sites, that docking is reversible, and that the ‘rapidly releasable pool’ measured electrophysiologically represents a small subset of docked granules.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N1563a42aa18143bd9d0376a54492adee
27 N6a1d0382f8b342e5a98fa89d11a5bef5
28 sg:journal.1018957
29 schema:keywords active zone
30 arrival
31 average
32 bare plasmalemma
33 cells
34 chromaffin cells
35 contrast
36 cytosol
37 dense-core secretory granules
38 disagreement
39 docking
40 docking site
41 electron microscopy
42 endocrine cells
43 evanescent-wave fluorescence microscopy7
44 existence6
45 exocytic sites
46 exocytosis
47 fluorescence microscopy7
48 fresh granules
49 granules
50 large pool
51 limited pool
52 live chromaffin cells
53 microscopy
54 microscopy7
55 min
56 motility
57 neurons
58 patches
59 plasmalemma
60 pool
61 releasable pool
62 results
63 results of docking
64 secretory granules
65 secretory vesicles
66 single granules
67 single secretory granules
68 sites
69 size5
70 small subset
71 speed
72 subset
73 synaptic vesicles
74 top speed
75 transport
76 vesicles
77 zone
78 schema:name Transport, docking and exocytosis of single secretory granules in live chromaffin cells
79 schema:pagination 474-478
80 schema:productId N5292875c1de345789599af69063e6862
81 N93496584cc394c249a81c51abac79f02
82 Nb44c35248e034eee8cbb6617235f2656
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013831002
84 https://doi.org/10.1038/41329
85 schema:sdDatePublished 2022-01-01T18:08
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N3c6a14f6e3974db2bf2d0dbf040eafde
88 schema:url https://doi.org/10.1038/41329
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N017489fc9c9342e88cd6beea617f5afa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name In Vitro Techniques
94 rdf:type schema:DefinedTerm
95 N10acb2be0b0143faad7f8876e12dac82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Animals
97 rdf:type schema:DefinedTerm
98 N1563a42aa18143bd9d0376a54492adee schema:issueNumber 6641
99 rdf:type schema:PublicationIssue
100 N21fb08781d4d4c3a967533024a7bf4c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Chromaffin Cells
102 rdf:type schema:DefinedTerm
103 N3c6a14f6e3974db2bf2d0dbf040eafde schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N5292875c1de345789599af69063e6862 schema:name dimensions_id
106 schema:value pub.1013831002
107 rdf:type schema:PropertyValue
108 N5e620341dd8f4bd18061c9d029b4651e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Cytoplasmic Granules
110 rdf:type schema:DefinedTerm
111 N6a1d0382f8b342e5a98fa89d11a5bef5 schema:volumeNumber 388
112 rdf:type schema:PublicationVolume
113 N777e3322db8d4647ac6c0cdef9a72ac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Stimulation, Chemical
115 rdf:type schema:DefinedTerm
116 N7afce90b5e804a9293b34e174db1e6f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Cattle
118 rdf:type schema:DefinedTerm
119 N7d6139443dea47ee87688b37d85a8b36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cytosol
121 rdf:type schema:DefinedTerm
122 N8b1aa0a0d4af49aa8d8cb83ecd73edd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Potassium
124 rdf:type schema:DefinedTerm
125 N93496584cc394c249a81c51abac79f02 schema:name pubmed_id
126 schema:value 9242406
127 rdf:type schema:PropertyValue
128 Nb44c35248e034eee8cbb6617235f2656 schema:name doi
129 schema:value 10.1038/41329
130 rdf:type schema:PropertyValue
131 Nc026dd4944cc45fa9d2ac7cb80264359 rdf:first sg:person.0605675002.60
132 rdf:rest rdf:nil
133 Nc41045ea5ca94da7a5117a134e8ec90b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Acridine Orange
135 rdf:type schema:DefinedTerm
136 Nd16d0152ae164f368c3747f1d249b105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Microscopy, Fluorescence
138 rdf:type schema:DefinedTerm
139 Nd51c534b437c448d89c150a7560139ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Biological Transport
141 rdf:type schema:DefinedTerm
142 Nd6f70de3cdb44c9e91e4eb9d33f9343b rdf:first sg:person.01365303303.46
143 rdf:rest Nc026dd4944cc45fa9d2ac7cb80264359
144 Ndd31bdb727e44a698277dbc6df590056 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Fluorescent Dyes
146 rdf:type schema:DefinedTerm
147 Ndd412677f9df4553b144cbff57a240ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Exocytosis
149 rdf:type schema:DefinedTerm
150 Ne23d1913a019450e8824caba96d60cc9 rdf:first sg:person.01355347603.50
151 rdf:rest Nd6f70de3cdb44c9e91e4eb9d33f9343b
152 Nf3ec7d5742994276896edad78e744fea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Cell Membrane
154 rdf:type schema:DefinedTerm
155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biological Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biochemistry and Cell Biology
160 rdf:type schema:DefinedTerm
161 sg:journal.1018957 schema:issn 0028-0836
162 1476-4687
163 schema:name Nature
164 schema:publisher Springer Nature
165 rdf:type schema:Periodical
166 sg:person.01355347603.50 schema:affiliation grid-institutes:grid.414703.5
167 schema:familyName Steyer
168 schema:givenName J. A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355347603.50
170 rdf:type schema:Person
171 sg:person.01365303303.46 schema:affiliation grid-institutes:grid.414703.5
172 schema:familyName Horstmann
173 schema:givenName H.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365303303.46
175 rdf:type schema:Person
176 sg:person.0605675002.60 schema:affiliation grid-institutes:grid.414703.5
177 schema:familyName Almers
178 schema:givenName W.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605675002.60
180 rdf:type schema:Person
181 sg:pub.10.1007/978-1-4419-1229-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002102818
182 https://doi.org/10.1007/978-1-4419-1229-9_11
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/375493a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011789082
185 https://doi.org/10.1038/375493a0
186 rdf:type schema:CreativeWork
187 grid-institutes:grid.414703.5 schema:alternateName Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
188 schema:name Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...