Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-10

AUTHORS

John H. Holtz, Sanford A. Asher

ABSTRACT

Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100 nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare ‘intelligent’ materials responsive to a wide range of analytes, including viruses. More... »

PAGES

829-832

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6653

VOLUME

389

Related Patents

  • Hybridizing Probe To Tether Nucleic Acid Which Has Been Immobilized To Electrophoretic Polymeric Medium, Migrating Test Nucleic Acid Through Medium And Hybridizing With Probe Causing Displacement Of Tether, Detecting Probe-Target Hybrid
  • Microfluidic Sorting Device
  • Macroporous Photonic Crystal Membrane, Methods Of Making, And Methods Of Use
  • Carbohydrate Sensor For Use In The Diagnosis Of Diabetes
  • Optically Encoded Particles
  • Devices And Methods For Detecting An Analyte In Salivary Fluid
  • Hydrogel Sensors For Detection Of Metal Ions
  • Gas And Vapor Sensing Devices Based On 2d Nanosheet Material
  • Liquid Crystal Composition, Liquid Crystal Device, Reflective Display Material, And Light Modulating Material
  • Use Of These Nanocomposite Materials Having Multiple Read/Write Capabilities At Differing Wavelengths For Use A Memory Storage Medium
  • Beverage Containers With Detection Capability
  • Optical Switching And Sorting Of Biological Samples And Microparticles Transported In A Micro-Fluidic Device, Including Integrated Bio-Chip Devices
  • Multiple Superimposed Interface Pattern Porous Microstructure Multi Layer Biosensing Method
  • Manipulation Of Live Cells And Inorganic Objects With Optical Micro Beam Arrays
  • Process For Isotropic Structural Colour Printing And An Apparatus For Detecting A Target Substance In The Gaseous Phase
  • Optically Encoded Particles Through Porosity Variation
  • Biomimetic Virus-Based Colorimetric Sensors
  • Biomimetic Virus-Based Colorimetric Sensors
  • Preparing Gas Sensor Device Comprising Crystalline Colloidal Array Polymerized In Hydrogel That Undergoes Volume Change In Response To Gas, Array Having Lattice Spacing That Changes As Volume Of Hydrogel Changes; Environmental, Medical Diagnosis
  • Beverage Immersate With Detection Capability
  • Measuring Device And Measuring Method For Measuring A Measured Variable By Means Of A Diffraction Measurement
  • Optical Switch And Router
  • Method Of Measuring External Stimulus And Volume Change Using Stimulus-Responsive Gel Comprising Edans
  • Cosmetic And Pharmaceutical Compositions Containing Crystalline Color System And Method Of Preparing Same
  • Analysis Or Separation Of Preferential Particles From Sample; Obtain Sample, Illuminate, Monitor Migration Of Particle In Optical Gradient Field, Recover Particle
  • Polymerized Crystalline Colloidal Array Chemical Sensing Materials For Use In High Ionic Strength Solutions
  • Repetitive Affinity Separation And Uses Therefor
  • Broad Wavelength Range Chemically-Tunable Photonic Materials
  • Separating Preferential Particles In Solution; Generate Medium Of Preferential Dieletric Constant, Incubate With Sample, Expose To Optical Gradient Field, Separate Particles
  • Systems And Methods For Normalization Of Chemical Sensor Data Based On Fluid State Changes
  • One Dimensional Photonic Crystals For Enhanced Fluorescence Based Sensing, Imaging And Assays
  • Hydrogel Which Undergoes Volume Change In Response To Specific Chemical Stimulus And A Crystalline Colloidal Array Of Charged Particles Having Lattice Spacing And Embedded In The Gel; Sensors For Pollution Control And Diagnosis
  • Method For Forming Optically Encoded Thin Films And Particles With Grey Scale Spectra
  • Apparatus For Applying Optical Gradient Forces
  • Associating Optical Gradient With Preferential Particles In Arrays; Obtain Particles, Insert Into Gradient, Expose To Beams, Separate And Recover Particles
  • Measuring Device And Measuring Method For Measuring An Indicator By Means Of A Bend Analysis
  • Novel Polymerized Crystalline Colloidal Array Sensors
  • Apparatus For Applying Optical Gradient Forces
  • Method For Separation Of Particles
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/39834

    DOI

    http://dx.doi.org/10.1038/39834

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053153223

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9349814


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Barium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosensing Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chemistry Techniques, Analytical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fiber Optic Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Flavins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lead", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Probe Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polystyrenes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Potassium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holtz", 
            "givenName": "John H.", 
            "id": "sg:person.01274624473.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274624473.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asher", 
            "givenName": "Sanford A.", 
            "id": "sg:person.01213522272.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213522272.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0021128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033856574", 
              "https://doi.org/10.1007/bfb0021128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025018297", 
              "https://doi.org/10.1007/bfb0021130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/281057a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009920534", 
              "https://doi.org/10.1038/281057a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037088593", 
              "https://doi.org/10.1007/bfb0021133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-2928-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000572095", 
              "https://doi.org/10.1007/978-1-4613-2928-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109719285", 
              "https://doi.org/10.1007/bfb0021125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006402543", 
              "https://doi.org/10.1007/bfb0021129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-6257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008060148", 
              "https://doi.org/10.1007/978-1-4757-6257-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-10", 
        "datePublishedReg": "1997-10-01", 
        "description": "Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100\u2009nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare \u2018intelligent\u2019 materials responsive to a wide range of analytes, including viruses.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/39834", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6653", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "389"
          }
        ], 
        "keywords": [
          "chemical sensing materials", 
          "molecular recognition agents", 
          "crystalline colloidal", 
          "specific analytes", 
          "certain analytes", 
          "polymer spheres", 
          "sensing materials", 
          "colloidal spheres", 
          "perceptible color change", 
          "analytes", 
          "hydrogel films", 
          "recognition events", 
          "optical properties", 
          "intense color", 
          "color change", 
          "diffraction properties", 
          "materials", 
          "longer wavelengths", 
          "colloidal", 
          "properties", 
          "osmotic pressure", 
          "gel", 
          "preparation", 
          "separation", 
          "wide range", 
          "films", 
          "chemical signals", 
          "sphere", 
          "presence", 
          "wavelength", 
          "Bragg peak", 
          "peak", 
          "lattice", 
          "agents", 
          "range", 
          "mean separation", 
          "light", 
          "color", 
          "diffract", 
          "variety", 
          "changes", 
          "means", 
          "group", 
          "pressure", 
          "strategies", 
          "rise", 
          "variety of ways", 
          "signals", 
          "way", 
          "response", 
          "virus", 
          "events"
        ], 
        "name": "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials", 
        "pagination": "829-832", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053153223"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/39834"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9349814"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/39834", 
          "https://app.dimensions.ai/details/publication/pub.1053153223"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_263.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/39834"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/39834'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/39834'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/39834'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/39834'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      101 URIs      84 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/39834 schema:about N033afd37b29246f9adb2b05cdd7db69c
    2 N0a3a683aec1644e585b75c07d4bf0956
    3 N0e17345b56a84bd39b8adc2faf695f66
    4 N249b583682d74fbabcd82b78ccdf27d9
    5 N6db2121f73a64d92b0ece5f30cf417a3
    6 Na6f1dfb8cf674cddacb1b9cc3dc963a8
    7 Nb2ac4eb8152a4aa5913436cc57fa4c6f
    8 Nb43803af330541219ed7230a06a9be5a
    9 Nc8e8a070de08406281cdd32454f0c360
    10 Ncf15b28730e840028a4fb1662ff31123
    11 Nd9fd1c1de4ed46439691bfebf0100799
    12 Ndf3ac75e4f4d46368fcf600519f93731
    13 Nf6993e66a2174a0d9345ff0e71f05e2f
    14 Nfb9d02461d4042ef94c7878a06443e25
    15 anzsrc-for:03
    16 anzsrc-for:0303
    17 anzsrc-for:0306
    18 schema:author Naa88c19fa6e0439b8089a9961f2602f9
    19 schema:citation sg:pub.10.1007/978-1-4613-2928-2_3
    20 sg:pub.10.1007/978-1-4757-6257-0
    21 sg:pub.10.1007/bfb0021125
    22 sg:pub.10.1007/bfb0021128
    23 sg:pub.10.1007/bfb0021129
    24 sg:pub.10.1007/bfb0021130
    25 sg:pub.10.1007/bfb0021133
    26 sg:pub.10.1038/281057a0
    27 schema:datePublished 1997-10
    28 schema:datePublishedReg 1997-10-01
    29 schema:description Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100 nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare ‘intelligent’ materials responsive to a wide range of analytes, including viruses.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N0b0502e652bf4fd989b43af4c74d713f
    33 Nce31b5ba65044a8da1a37ac9678f6e69
    34 sg:journal.1018957
    35 schema:keywords Bragg peak
    36 agents
    37 analytes
    38 certain analytes
    39 changes
    40 chemical sensing materials
    41 chemical signals
    42 colloidal
    43 colloidal spheres
    44 color
    45 color change
    46 crystalline colloidal
    47 diffract
    48 diffraction properties
    49 events
    50 films
    51 gel
    52 group
    53 hydrogel films
    54 intense color
    55 lattice
    56 light
    57 longer wavelengths
    58 materials
    59 mean separation
    60 means
    61 molecular recognition agents
    62 optical properties
    63 osmotic pressure
    64 peak
    65 perceptible color change
    66 polymer spheres
    67 preparation
    68 presence
    69 pressure
    70 properties
    71 range
    72 recognition events
    73 response
    74 rise
    75 sensing materials
    76 separation
    77 signals
    78 specific analytes
    79 sphere
    80 strategies
    81 variety
    82 variety of ways
    83 virus
    84 wavelength
    85 way
    86 wide range
    87 schema:name Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials
    88 schema:pagination 829-832
    89 schema:productId N2119a15c8f8841b0b238b3deb527d8bd
    90 N4c9dd7378b19418ea397381c95b27eb3
    91 Nacbb7c3806a54d4d8801645af2c421d0
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153223
    93 https://doi.org/10.1038/39834
    94 schema:sdDatePublished 2022-10-01T06:29
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher Nce70242b3ea24174bcf863388390b268
    97 schema:url https://doi.org/10.1038/39834
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N033afd37b29246f9adb2b05cdd7db69c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Glucose
    103 rdf:type schema:DefinedTerm
    104 N0a3a683aec1644e585b75c07d4bf0956 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Gels
    106 rdf:type schema:DefinedTerm
    107 N0b0502e652bf4fd989b43af4c74d713f schema:volumeNumber 389
    108 rdf:type schema:PublicationVolume
    109 N0e17345b56a84bd39b8adc2faf695f66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Molecular Probe Techniques
    111 rdf:type schema:DefinedTerm
    112 N2119a15c8f8841b0b238b3deb527d8bd schema:name pubmed_id
    113 schema:value 9349814
    114 rdf:type schema:PropertyValue
    115 N249b583682d74fbabcd82b78ccdf27d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Polystyrenes
    117 rdf:type schema:DefinedTerm
    118 N4c9dd7378b19418ea397381c95b27eb3 schema:name dimensions_id
    119 schema:value pub.1053153223
    120 rdf:type schema:PropertyValue
    121 N6b47ce59263c4a8f9a5e47198575528d rdf:first sg:person.01213522272.47
    122 rdf:rest rdf:nil
    123 N6db2121f73a64d92b0ece5f30cf417a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Lead
    125 rdf:type schema:DefinedTerm
    126 Na6f1dfb8cf674cddacb1b9cc3dc963a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Temperature
    128 rdf:type schema:DefinedTerm
    129 Naa88c19fa6e0439b8089a9961f2602f9 rdf:first sg:person.01274624473.03
    130 rdf:rest N6b47ce59263c4a8f9a5e47198575528d
    131 Nacbb7c3806a54d4d8801645af2c421d0 schema:name doi
    132 schema:value 10.1038/39834
    133 rdf:type schema:PropertyValue
    134 Nb2ac4eb8152a4aa5913436cc57fa4c6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Chemistry Techniques, Analytical
    136 rdf:type schema:DefinedTerm
    137 Nb43803af330541219ed7230a06a9be5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Barium
    139 rdf:type schema:DefinedTerm
    140 Nc8e8a070de08406281cdd32454f0c360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Crystallization
    142 rdf:type schema:DefinedTerm
    143 Nce31b5ba65044a8da1a37ac9678f6e69 schema:issueNumber 6653
    144 rdf:type schema:PublicationIssue
    145 Nce70242b3ea24174bcf863388390b268 schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 Ncf15b28730e840028a4fb1662ff31123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Polymers
    149 rdf:type schema:DefinedTerm
    150 Nd9fd1c1de4ed46439691bfebf0100799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Potassium
    152 rdf:type schema:DefinedTerm
    153 Ndf3ac75e4f4d46368fcf600519f93731 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Fiber Optic Technology
    155 rdf:type schema:DefinedTerm
    156 Nf6993e66a2174a0d9345ff0e71f05e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Biosensing Techniques
    158 rdf:type schema:DefinedTerm
    159 Nfb9d02461d4042ef94c7878a06443e25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Flavins
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Chemical Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Macromolecular and Materials Chemistry
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Physical Chemistry (incl. Structural)
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1018957 schema:issn 0028-0836
    172 1476-4687
    173 schema:name Nature
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01213522272.47 schema:affiliation grid-institutes:grid.21925.3d
    177 schema:familyName Asher
    178 schema:givenName Sanford A.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213522272.47
    180 rdf:type schema:Person
    181 sg:person.01274624473.03 schema:affiliation grid-institutes:grid.21925.3d
    182 schema:familyName Holtz
    183 schema:givenName John H.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274624473.03
    185 rdf:type schema:Person
    186 sg:pub.10.1007/978-1-4613-2928-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572095
    187 https://doi.org/10.1007/978-1-4613-2928-2_3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-1-4757-6257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008060148
    190 https://doi.org/10.1007/978-1-4757-6257-0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bfb0021125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109719285
    193 https://doi.org/10.1007/bfb0021125
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bfb0021128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033856574
    196 https://doi.org/10.1007/bfb0021128
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bfb0021129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006402543
    199 https://doi.org/10.1007/bfb0021129
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bfb0021130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025018297
    202 https://doi.org/10.1007/bfb0021130
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/bfb0021133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037088593
    205 https://doi.org/10.1007/bfb0021133
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/281057a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009920534
    208 https://doi.org/10.1038/281057a0
    209 rdf:type schema:CreativeWork
    210 grid-institutes:grid.21925.3d schema:alternateName Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA
    211 schema:name Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...