Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-10

AUTHORS

John H. Holtz, Sanford A. Asher

ABSTRACT

Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100 nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare ‘intelligent’ materials responsive to a wide range of analytes, including viruses. More... »

PAGES

829-832

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6653

VOLUME

389

Related Patents

  • Hybridizing Probe To Tether Nucleic Acid Which Has Been Immobilized To Electrophoretic Polymeric Medium, Migrating Test Nucleic Acid Through Medium And Hybridizing With Probe Causing Displacement Of Tether, Detecting Probe-Target Hybrid
  • Hydrogel Sensors For Detection Of Metal Ions
  • Microfluidic Sorting Device
  • Optically Encoded Particles
  • Devices And Methods For Detecting An Analyte In Salivary Fluid
  • Carbohydrate Sensor For Use In The Diagnosis Of Diabetes
  • Macroporous Photonic Crystal Membrane, Methods Of Making, And Methods Of Use
  • Biomimetic Virus-Based Colorimetric Sensors
  • Optically Encoded Particles Through Porosity Variation
  • Multiple Superimposed Interface Pattern Porous Microstructure Multi Layer Biosensing Method
  • Process For Isotropic Structural Colour Printing And An Apparatus For Detecting A Target Substance In The Gaseous Phase
  • Gas And Vapor Sensing Devices Based On 2d Nanosheet Material
  • Liquid Crystal Composition, Liquid Crystal Device, Reflective Display Material, And Light Modulating Material
  • Use Of These Nanocomposite Materials Having Multiple Read/Write Capabilities At Differing Wavelengths For Use A Memory Storage Medium
  • Optical Switching And Sorting Of Biological Samples And Microparticles Transported In A Micro-Fluidic Device, Including Integrated Bio-Chip Devices
  • Manipulation Of Live Cells And Inorganic Objects With Optical Micro Beam Arrays
  • Beverage Containers With Detection Capability
  • Cosmetic And Pharmaceutical Compositions Containing Crystalline Color System And Method Of Preparing Same
  • Analysis Or Separation Of Preferential Particles From Sample; Obtain Sample, Illuminate, Monitor Migration Of Particle In Optical Gradient Field, Recover Particle
  • Preparing Gas Sensor Device Comprising Crystalline Colloidal Array Polymerized In Hydrogel That Undergoes Volume Change In Response To Gas, Array Having Lattice Spacing That Changes As Volume Of Hydrogel Changes; Environmental, Medical Diagnosis
  • Polymerized Crystalline Colloidal Array Chemical Sensing Materials For Use In High Ionic Strength Solutions
  • Measuring Device And Measuring Method For Measuring A Measured Variable By Means Of A Diffraction Measurement
  • Method Of Measuring External Stimulus And Volume Change Using Stimulus-Responsive Gel Comprising Edans
  • Biomimetic Virus-Based Colorimetric Sensors
  • Optical Switch And Router
  • Beverage Immersate With Detection Capability
  • Broad Wavelength Range Chemically-Tunable Photonic Materials
  • Method For Forming Optically Encoded Thin Films And Particles With Grey Scale Spectra
  • One Dimensional Photonic Crystals For Enhanced Fluorescence Based Sensing, Imaging And Assays
  • Repetitive Affinity Separation And Uses Therefor
  • Systems And Methods For Normalization Of Chemical Sensor Data Based On Fluid State Changes
  • Hydrogel Which Undergoes Volume Change In Response To Specific Chemical Stimulus And A Crystalline Colloidal Array Of Charged Particles Having Lattice Spacing And Embedded In The Gel; Sensors For Pollution Control And Diagnosis
  • Separating Preferential Particles In Solution; Generate Medium Of Preferential Dieletric Constant, Incubate With Sample, Expose To Optical Gradient Field, Separate Particles
  • Method For Separation Of Particles
  • Measuring Device And Measuring Method For Measuring An Indicator By Means Of A Bend Analysis
  • Associating Optical Gradient With Preferential Particles In Arrays; Obtain Particles, Insert Into Gradient, Expose To Beams, Separate And Recover Particles
  • Novel Polymerized Crystalline Colloidal Array Sensors
  • Apparatus For Applying Optical Gradient Forces
  • Apparatus For Applying Optical Gradient Forces
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/39834

    DOI

    http://dx.doi.org/10.1038/39834

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053153223

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9349814


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Barium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosensing Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chemistry Techniques, Analytical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fiber Optic Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Flavins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lead", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Probe Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polystyrenes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Potassium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holtz", 
            "givenName": "John H.", 
            "id": "sg:person.01274624473.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274624473.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA", 
              "id": "http://www.grid.ac/institutes/grid.21925.3d", 
              "name": [
                "Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asher", 
            "givenName": "Sanford A.", 
            "id": "sg:person.01213522272.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213522272.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0021130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025018297", 
              "https://doi.org/10.1007/bfb0021130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-6257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008060148", 
              "https://doi.org/10.1007/978-1-4757-6257-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109719285", 
              "https://doi.org/10.1007/bfb0021125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037088593", 
              "https://doi.org/10.1007/bfb0021133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033856574", 
              "https://doi.org/10.1007/bfb0021128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/281057a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009920534", 
              "https://doi.org/10.1038/281057a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0021129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006402543", 
              "https://doi.org/10.1007/bfb0021129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-2928-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000572095", 
              "https://doi.org/10.1007/978-1-4613-2928-2_3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-10", 
        "datePublishedReg": "1997-10-01", 
        "description": "Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100\u2009nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare \u2018intelligent\u2019 materials responsive to a wide range of analytes, including viruses.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/39834", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6653", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "389"
          }
        ], 
        "keywords": [
          "chemical sensing materials", 
          "molecular recognition agents", 
          "crystalline colloidal", 
          "specific analytes", 
          "certain analytes", 
          "polymer spheres", 
          "sensing materials", 
          "colloidal spheres", 
          "perceptible color change", 
          "analytes", 
          "hydrogel films", 
          "recognition events", 
          "optical properties", 
          "intense color", 
          "color change", 
          "diffraction properties", 
          "materials", 
          "longer wavelengths", 
          "colloidal", 
          "properties", 
          "osmotic pressure", 
          "gel", 
          "preparation", 
          "separation", 
          "wide range", 
          "films", 
          "chemical signals", 
          "sphere", 
          "presence", 
          "wavelength", 
          "Bragg peak", 
          "peak", 
          "lattice", 
          "agents", 
          "range", 
          "mean separation", 
          "light", 
          "color", 
          "diffract", 
          "variety", 
          "changes", 
          "means", 
          "group", 
          "pressure", 
          "strategies", 
          "rise", 
          "variety of ways", 
          "signals", 
          "way", 
          "response", 
          "virus", 
          "events"
        ], 
        "name": "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials", 
        "pagination": "829-832", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053153223"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/39834"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9349814"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/39834", 
          "https://app.dimensions.ai/details/publication/pub.1053153223"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_290.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/39834"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/39834'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/39834'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/39834'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/39834'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      101 URIs      84 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/39834 schema:about N2cf8665c83e94ffabcaa4a02f2a973b0
    2 N4e0c9c2083b747019ebb449a3930f757
    3 N5fb6049a1bec49a598f97351e3675b3f
    4 N6c17524dec38450989c1b70189fb3c98
    5 N6f6d2041ff7f4a019a5179edbd7fc43b
    6 N747213588e8c4e5fb8a8ad352c79e250
    7 N974c8d8ad5234c6288e0dcc09fd93d3d
    8 Na080346bb471401f9b2a235f6924501a
    9 Nced7b186df164cfdb21e2c0c10ed7689
    10 Nd20b35c0b7bc46828baee3c5100a8c51
    11 Nd3cec041932841d4904368f0c4f199ad
    12 Nddedc91580944a3f8b35f3129c39b246
    13 Nf4be23aec7684d1fa183df9b75e45fc1
    14 Nf7c5d44686d04437aaca135540a9dd3a
    15 anzsrc-for:03
    16 anzsrc-for:0303
    17 anzsrc-for:0306
    18 schema:author N742cfc6b239444b69c574fd8dc3a8f65
    19 schema:citation sg:pub.10.1007/978-1-4613-2928-2_3
    20 sg:pub.10.1007/978-1-4757-6257-0
    21 sg:pub.10.1007/bfb0021125
    22 sg:pub.10.1007/bfb0021128
    23 sg:pub.10.1007/bfb0021129
    24 sg:pub.10.1007/bfb0021130
    25 sg:pub.10.1007/bfb0021133
    26 sg:pub.10.1038/281057a0
    27 schema:datePublished 1997-10
    28 schema:datePublishedReg 1997-10-01
    29 schema:description Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100 nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare ‘intelligent’ materials responsive to a wide range of analytes, including viruses.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N3008f8a658a247cfb82a42d03f463e7b
    33 Na562ba97b33b44fa8575dfdcf5720f80
    34 sg:journal.1018957
    35 schema:keywords Bragg peak
    36 agents
    37 analytes
    38 certain analytes
    39 changes
    40 chemical sensing materials
    41 chemical signals
    42 colloidal
    43 colloidal spheres
    44 color
    45 color change
    46 crystalline colloidal
    47 diffract
    48 diffraction properties
    49 events
    50 films
    51 gel
    52 group
    53 hydrogel films
    54 intense color
    55 lattice
    56 light
    57 longer wavelengths
    58 materials
    59 mean separation
    60 means
    61 molecular recognition agents
    62 optical properties
    63 osmotic pressure
    64 peak
    65 perceptible color change
    66 polymer spheres
    67 preparation
    68 presence
    69 pressure
    70 properties
    71 range
    72 recognition events
    73 response
    74 rise
    75 sensing materials
    76 separation
    77 signals
    78 specific analytes
    79 sphere
    80 strategies
    81 variety
    82 variety of ways
    83 virus
    84 wavelength
    85 way
    86 wide range
    87 schema:name Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials
    88 schema:pagination 829-832
    89 schema:productId N0d27b909282f4662bc02d5ea4d9ea4ce
    90 N73a7ff71bcfa49f6a8eef721302ee4d6
    91 N90e4afd9f53749cf8e42a1f537cf9842
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153223
    93 https://doi.org/10.1038/39834
    94 schema:sdDatePublished 2022-09-02T15:48
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N08d7ea700d0644d1992a568532651b92
    97 schema:url https://doi.org/10.1038/39834
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N08d7ea700d0644d1992a568532651b92 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N0d27b909282f4662bc02d5ea4d9ea4ce schema:name pubmed_id
    104 schema:value 9349814
    105 rdf:type schema:PropertyValue
    106 N2b467479c10042ab935600110151cee8 rdf:first sg:person.01213522272.47
    107 rdf:rest rdf:nil
    108 N2cf8665c83e94ffabcaa4a02f2a973b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Polystyrenes
    110 rdf:type schema:DefinedTerm
    111 N3008f8a658a247cfb82a42d03f463e7b schema:issueNumber 6653
    112 rdf:type schema:PublicationIssue
    113 N4e0c9c2083b747019ebb449a3930f757 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Gels
    115 rdf:type schema:DefinedTerm
    116 N5fb6049a1bec49a598f97351e3675b3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Chemistry Techniques, Analytical
    118 rdf:type schema:DefinedTerm
    119 N6c17524dec38450989c1b70189fb3c98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Barium
    121 rdf:type schema:DefinedTerm
    122 N6f6d2041ff7f4a019a5179edbd7fc43b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Lead
    124 rdf:type schema:DefinedTerm
    125 N73a7ff71bcfa49f6a8eef721302ee4d6 schema:name dimensions_id
    126 schema:value pub.1053153223
    127 rdf:type schema:PropertyValue
    128 N742cfc6b239444b69c574fd8dc3a8f65 rdf:first sg:person.01274624473.03
    129 rdf:rest N2b467479c10042ab935600110151cee8
    130 N747213588e8c4e5fb8a8ad352c79e250 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Molecular Probe Techniques
    132 rdf:type schema:DefinedTerm
    133 N90e4afd9f53749cf8e42a1f537cf9842 schema:name doi
    134 schema:value 10.1038/39834
    135 rdf:type schema:PropertyValue
    136 N974c8d8ad5234c6288e0dcc09fd93d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Glucose
    138 rdf:type schema:DefinedTerm
    139 Na080346bb471401f9b2a235f6924501a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Biosensing Techniques
    141 rdf:type schema:DefinedTerm
    142 Na562ba97b33b44fa8575dfdcf5720f80 schema:volumeNumber 389
    143 rdf:type schema:PublicationVolume
    144 Nced7b186df164cfdb21e2c0c10ed7689 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Fiber Optic Technology
    146 rdf:type schema:DefinedTerm
    147 Nd20b35c0b7bc46828baee3c5100a8c51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Flavins
    149 rdf:type schema:DefinedTerm
    150 Nd3cec041932841d4904368f0c4f199ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Temperature
    152 rdf:type schema:DefinedTerm
    153 Nddedc91580944a3f8b35f3129c39b246 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Crystallization
    155 rdf:type schema:DefinedTerm
    156 Nf4be23aec7684d1fa183df9b75e45fc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Potassium
    158 rdf:type schema:DefinedTerm
    159 Nf7c5d44686d04437aaca135540a9dd3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Polymers
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Chemical Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Macromolecular and Materials Chemistry
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Physical Chemistry (incl. Structural)
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1018957 schema:issn 0028-0836
    172 1476-4687
    173 schema:name Nature
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01213522272.47 schema:affiliation grid-institutes:grid.21925.3d
    177 schema:familyName Asher
    178 schema:givenName Sanford A.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213522272.47
    180 rdf:type schema:Person
    181 sg:person.01274624473.03 schema:affiliation grid-institutes:grid.21925.3d
    182 schema:familyName Holtz
    183 schema:givenName John H.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274624473.03
    185 rdf:type schema:Person
    186 sg:pub.10.1007/978-1-4613-2928-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572095
    187 https://doi.org/10.1007/978-1-4613-2928-2_3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-1-4757-6257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008060148
    190 https://doi.org/10.1007/978-1-4757-6257-0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bfb0021125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109719285
    193 https://doi.org/10.1007/bfb0021125
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bfb0021128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033856574
    196 https://doi.org/10.1007/bfb0021128
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bfb0021129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006402543
    199 https://doi.org/10.1007/bfb0021129
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bfb0021130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025018297
    202 https://doi.org/10.1007/bfb0021130
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/bfb0021133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037088593
    205 https://doi.org/10.1007/bfb0021133
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/281057a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009920534
    208 https://doi.org/10.1038/281057a0
    209 rdf:type schema:CreativeWork
    210 grid-institutes:grid.21925.3d schema:alternateName Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA
    211 schema:name Department of Chemistry, University of Pittsburgh, 15260, Pittsburgh, Pennsylvania, USA
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...