A single-electron transistor made from a cadmium selenide nanocrystal View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-10

AUTHORS

David L. Klein, Richard Roth, Andrew K. L. Lim, A. Paul Alivisatos, Paul L. McEuen

ABSTRACT

The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals1,2 whose dimensions are much smaller than those that can be realized using lithographic techniques3,4,5,6. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties7,8,9. Preliminary studies of both the electrical10,11,12,13 and optical properties14,15,16 of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots3,4,5,6 and small metallic grains17. More... »

PAGES

699-701

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/39535

DOI

http://dx.doi.org/10.1038/39535

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005848175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, 94720, Berkeley, California, USA", 
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "David L.", 
        "id": "sg:person.014070116447.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070116447.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Richard", 
        "id": "sg:person.010255372626.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255372626.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Andrew K. L.", 
        "id": "sg:person.015650425425.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650425425.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alivisatos", 
        "givenName": "A. Paul", 
        "id": "sg:person.01202577361.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202577361.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, 94720, Berkeley, California, USA", 
            "Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McEuen", 
        "givenName": "Paul L.", 
        "id": "sg:person.01277202621.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277202621.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/380559b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026945182", 
          "https://doi.org/10.1038/380559b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370354a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018369978", 
          "https://doi.org/10.1038/370354a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00331535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007051521", 
          "https://doi.org/10.1007/bf00331535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383802a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009052486", 
          "https://doi.org/10.1038/383802a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-10", 
    "datePublishedReg": "1997-10-01", 
    "description": "The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals1,2 whose dimensions are much smaller than those that can be realized using lithographic techniques3,4,5,6. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties7,8,9. Preliminary studies of both the electrical10,11,12,13 and optical properties14,15,16 of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots3,4,5,6 and small metallic grains17.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/39535", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6652", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "389"
      }
    ], 
    "keywords": [
      "single-electron transistor", 
      "quantum size effect", 
      "charge carriers", 
      "energy level spectrum", 
      "cadmium selenide nanocrystals", 
      "small electronic systems", 
      "colloidal chemistry", 
      "such nanocrystals", 
      "individual nanocrystals", 
      "colloidal nanocrystals", 
      "optical materials", 
      "selenide nanocrystals", 
      "nanocrystals", 
      "device structure", 
      "excess charge", 
      "electrical transport", 
      "such measurements", 
      "transistors", 
      "electronic systems", 
      "size effect", 
      "measurements", 
      "quantum", 
      "carriers", 
      "chemistry", 
      "semiconductors", 
      "spectra", 
      "energy", 
      "routine creation", 
      "charge", 
      "cadmium", 
      "properties", 
      "materials", 
      "structure", 
      "size", 
      "transport", 
      "technique", 
      "preliminary study", 
      "system", 
      "study", 
      "dimensions", 
      "creation", 
      "similar studies", 
      "effect", 
      "number"
    ], 
    "name": "A single-electron transistor made from a cadmium selenide nanocrystal", 
    "pagination": "699-701", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005848175"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/39535"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/39535", 
      "https://app.dimensions.ai/details/publication/pub.1005848175"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_303.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/39535"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/39535'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/39535'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/39535'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/39535'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      22 PREDICATES      74 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/39535 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N047e1bc9ba7544319fb16baff3a279e2
4 schema:citation sg:pub.10.1007/bf00331535
5 sg:pub.10.1038/370354a0
6 sg:pub.10.1038/380559b0
7 sg:pub.10.1038/383802a0
8 schema:datePublished 1997-10
9 schema:datePublishedReg 1997-10-01
10 schema:description The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals1,2 whose dimensions are much smaller than those that can be realized using lithographic techniques3,4,5,6. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties7,8,9. Preliminary studies of both the electrical10,11,12,13 and optical properties14,15,16 of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots3,4,5,6 and small metallic grains17.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N24533df2c29d4433b516d0a11355f0a4
15 N71712acce7c74e668569edfd7a3ddf93
16 sg:journal.1018957
17 schema:keywords cadmium
18 cadmium selenide nanocrystals
19 carriers
20 charge
21 charge carriers
22 chemistry
23 colloidal chemistry
24 colloidal nanocrystals
25 creation
26 device structure
27 dimensions
28 effect
29 electrical transport
30 electronic systems
31 energy
32 energy level spectrum
33 excess charge
34 individual nanocrystals
35 materials
36 measurements
37 nanocrystals
38 number
39 optical materials
40 preliminary study
41 properties
42 quantum
43 quantum size effect
44 routine creation
45 selenide nanocrystals
46 semiconductors
47 similar studies
48 single-electron transistor
49 size
50 size effect
51 small electronic systems
52 spectra
53 structure
54 study
55 such measurements
56 such nanocrystals
57 system
58 technique
59 transistors
60 transport
61 schema:name A single-electron transistor made from a cadmium selenide nanocrystal
62 schema:pagination 699-701
63 schema:productId N9dc2cfd65d164448a80d7821d3a5c379
64 Nc27a471fc4554fe5a1de580633c2b848
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005848175
66 https://doi.org/10.1038/39535
67 schema:sdDatePublished 2022-05-20T07:20
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N878edfc9639c42e8bb0997df1febfb80
70 schema:url https://doi.org/10.1038/39535
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N047e1bc9ba7544319fb16baff3a279e2 rdf:first sg:person.014070116447.99
75 rdf:rest Na607e502394543189f8cb495049b3840
76 N24533df2c29d4433b516d0a11355f0a4 schema:issueNumber 6652
77 rdf:type schema:PublicationIssue
78 N2492bea4357548d99785e6d7120d011c rdf:first sg:person.01202577361.01
79 rdf:rest Ne604ddff2c8e48be81680e580025b89e
80 N71712acce7c74e668569edfd7a3ddf93 schema:volumeNumber 389
81 rdf:type schema:PublicationVolume
82 N878edfc9639c42e8bb0997df1febfb80 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N98705f78377f4a78a42da42bf01cdaba rdf:first sg:person.015650425425.77
85 rdf:rest N2492bea4357548d99785e6d7120d011c
86 N9dc2cfd65d164448a80d7821d3a5c379 schema:name dimensions_id
87 schema:value pub.1005848175
88 rdf:type schema:PropertyValue
89 Na607e502394543189f8cb495049b3840 rdf:first sg:person.010255372626.83
90 rdf:rest N98705f78377f4a78a42da42bf01cdaba
91 Nc27a471fc4554fe5a1de580633c2b848 schema:name doi
92 schema:value 10.1038/39535
93 rdf:type schema:PropertyValue
94 Ne604ddff2c8e48be81680e580025b89e rdf:first sg:person.01277202621.80
95 rdf:rest rdf:nil
96 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
97 schema:name Chemical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Chemistry (incl. Structural)
101 rdf:type schema:DefinedTerm
102 sg:journal.1018957 schema:issn 0028-0836
103 1476-4687
104 schema:name Nature
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.010255372626.83 schema:affiliation grid-institutes:grid.184769.5
108 schema:familyName Roth
109 schema:givenName Richard
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255372626.83
111 rdf:type schema:Person
112 sg:person.01202577361.01 schema:affiliation grid-institutes:grid.184769.5
113 schema:familyName Alivisatos
114 schema:givenName A. Paul
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202577361.01
116 rdf:type schema:Person
117 sg:person.01277202621.80 schema:affiliation grid-institutes:grid.184769.5
118 schema:familyName McEuen
119 schema:givenName Paul L.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277202621.80
121 rdf:type schema:Person
122 sg:person.014070116447.99 schema:affiliation grid-institutes:grid.47840.3f
123 schema:familyName Klein
124 schema:givenName David L.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014070116447.99
126 rdf:type schema:Person
127 sg:person.015650425425.77 schema:affiliation grid-institutes:grid.184769.5
128 schema:familyName Lim
129 schema:givenName Andrew K. L.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650425425.77
131 rdf:type schema:Person
132 sg:pub.10.1007/bf00331535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007051521
133 https://doi.org/10.1007/bf00331535
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/370354a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018369978
136 https://doi.org/10.1038/370354a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/380559b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026945182
139 https://doi.org/10.1038/380559b0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/383802a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009052486
142 https://doi.org/10.1038/383802a0
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.184769.5 schema:alternateName Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
145 schema:name Department of Chemistry, University of California, 94720, Berkeley, California, USA
146 Department of Physics, University of California, 94720, Berkeley, California, USA
147 Molecular Design Institute, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
148 rdf:type schema:Organization
149 grid-institutes:grid.47840.3f schema:alternateName Department of Chemistry, University of California, 94720, Berkeley, California, USA
150 schema:name Department of Chemistry, University of California, 94720, Berkeley, California, USA
151 Department of Physics, University of California, 94720, Berkeley, California, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...