Porous silica via colloidal crystallization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-10

AUTHORS

O. D. Velev, T. A. Jede, R. F. Lobo, A. M. Lenhoff

ABSTRACT

Microstructured porous silicas have potential applications in catalysis, separations, coatings, microelectronics and electro-optics, but methods for producing materials with uniform submicrometre pores have not been available. We have now developed a method in which modified colloidal crystals are used as templates for silica polymerization. This method yields products with highly uniform and structured pores of tuneable size in the submicrometre region. More... »

PAGES

447-448

Journal

TITLE

Nature

ISSUE

6650

VOLUME

389

Author Affiliations

Related Patents

  • Synthesis Of Macroporous Structures
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Methods Of Making Spatially Aligned Nanotubes And Nanotube Arrays
  • Endoprosthesis Coating
  • Optical Component Array Having Adjustable Curvature
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Stretchable And Foldable Electronic Devices
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Optical Systems Fabricated By Printing-Based Assembly
  • Angle Switchable Crystalline Colloidal Array Films
  • Medical Device With A Porous Surface For Delivery Of A Therapeutic Agent
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Medium Scale Carbon Nanotube Thin Film Integrated Circuits On Flexible Plastic Substrates
  • Variably Porous Structures
  • Stretchable And Foldable Electronic Devices
  • Transient Devices Designed To Undergo Programmable Transformations
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Waterproof Stretchable Optoelectronics
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Thermally Managed Led Arrays Assembled By Printing
  • Conformable Actively Multiplexed High-Density Surface Electrode Array For Brain Interfacing
  • Medical Devices Having A Coating Of Inorganic Material
  • Medical Devices Having Nanoporous Coatings For Controlled Therapeutic Agent Delivery
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Printable, Flexible And Stretchable Diamond For Thermal Management
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Endoprostheses
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Extremely Stretchable Electronics
  • Extremely Stretchable Electronics
  • Composite Crystal Colloidal Array With Photochromic Member
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Coating For Medical Device Having Increased Surface Area
  • Stents With Ceramic Drug Reservoir Layer And Methods Of Making And Using The Same
  • Implantable Biomedical Devices On Bioresorbable Substrates
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Deformable Underlayer For Stent
  • Stent With Embedded Material
  • Optical Systems Fabricated By Printing-Based Assembly
  • Drug-Releasing Stent With Ceramic-Containing Layer
  • Thermally Responsive Crystalline Colloidal Arrays
  • Hierarchically Ordered Porous Oxides
  • Medical Devices With Selective Titanium Oxide Coatings
  • Catheter Balloon Having Stretchable Integrated Circuitry And Sensor Array
  • Endoprosthesis Having A Non-Fouling Surface
  • Methods And Applications Of Non-Planar Imaging Arrays
  • Medical Devices Having Inorganic Particle Layers
  • Embedding Thin Chips In Polymer
  • Temperature Sensitive Composite For Photonic Crystals
  • Endoprosthese
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Drug Eluting Medical Devices Having Porous Layers
  • Coatings For Medical Devices Comprising A Therapeutic Agent And A Metallic Material
  • Endoprosthesis Coating
  • Medical Implants Including Iridium Oxide
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Endoprosthesis Coating
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Methods And Devices For Fabricating Three-Dimensional Nanoscale Structures
  • Endoprosthesis With Coatings
  • Optical Systems Fabricated By Printing-Based Assembly
  • Articles Having Ceramic Coated Surfaces
  • Medical Devices With Drug-Eluting Coating
  • Method For Forming Hierarchically Ordered Porous Oxides
  • Endoprosthesis Coating
  • Medical Device Coating By Laser Cladding
  • Optical Systems Fabricated By Printing-Based Assembly
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Method Of Forming Mesoscopically Structured Material
  • Stretchable And Foldable Electronic Devices
  • Flexible Electronic Structure
  • Pattern Transfer Printing By Kinetic Control Of Adhesion To An Elastomeric Stamp
  • Endoprosthesis With Select Ceramic Morphology
  • Coated Medical Devices For Abluminal Drug Delivery
  • Systems, Methods, And Devices Using Stretchable Or Flexible Electronics For Medical Applications
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Medical Devices Comprising A Porous Metal Oxide Or Metal Material And A Polymer Coating For Delivering Therapeutic Agents
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Protective Cases With Integrated Electronics
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/38921

    DOI

    http://dx.doi.org/10.1038/38921

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048835468


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Delaware", 
              "id": "https://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Velev", 
            "givenName": "O. D.", 
            "id": "sg:person.0611262100.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611262100.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delaware", 
              "id": "https://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jede", 
            "givenName": "T. A.", 
            "id": "sg:person.013243161163.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243161163.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delaware", 
              "id": "https://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lobo", 
            "givenName": "R. F.", 
            "id": "sg:person.011262652461.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262652461.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delaware", 
              "id": "https://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenhoff", 
            "givenName": "A. M.", 
            "id": "sg:person.01215271002.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215271002.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/385230a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003529405", 
              "https://doi.org/10.1038/385230a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/359710a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004442060", 
              "https://doi.org/10.1038/359710a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361026b0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007200204", 
              "https://doi.org/10.1038/361026b0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382313a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008147902", 
              "https://doi.org/10.1038/382313a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361026a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017841251", 
              "https://doi.org/10.1038/361026a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385321a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034087757", 
              "https://doi.org/10.1038/385321a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385420a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053573777", 
              "https://doi.org/10.1038/385420a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00053a020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055702551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.245.4917.507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062538132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.261.5126.1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062546861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.272.5262.706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062552909"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-10", 
        "datePublishedReg": "1997-10-01", 
        "description": "Microstructured porous silicas have potential applications in catalysis, separations, coatings, microelectronics and electro-optics, but methods for producing materials with uniform submicrometre pores have not been available. We have now developed a method in which modified colloidal crystals are used as templates for silica polymerization. This method yields products with highly uniform and structured pores of tuneable size in the submicrometre region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/38921", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6650", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "389"
          }
        ], 
        "name": "Porous silica via colloidal crystallization", 
        "pagination": "447-448", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e8a48e868c28c9c42ee15834ae21bad399e0a40dd515cabe5a53577a76adb206"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/38921"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048835468"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/38921", 
          "https://app.dimensions.ai/details/publication/pub.1048835468"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53998_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/38921"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/38921'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/38921'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/38921'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/38921'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/38921 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author N133f2975a77b4981a290934a06ead2b9
    4 schema:citation sg:pub.10.1038/359710a0
    5 sg:pub.10.1038/361026a0
    6 sg:pub.10.1038/361026b0
    7 sg:pub.10.1038/382313a0
    8 sg:pub.10.1038/385230a0
    9 sg:pub.10.1038/385321a0
    10 sg:pub.10.1038/385420a0
    11 https://doi.org/10.1021/ja00053a020
    12 https://doi.org/10.1126/science.245.4917.507
    13 https://doi.org/10.1126/science.261.5126.1299
    14 https://doi.org/10.1126/science.272.5262.706
    15 schema:datePublished 1997-10
    16 schema:datePublishedReg 1997-10-01
    17 schema:description Microstructured porous silicas have potential applications in catalysis, separations, coatings, microelectronics and electro-optics, but methods for producing materials with uniform submicrometre pores have not been available. We have now developed a method in which modified colloidal crystals are used as templates for silica polymerization. This method yields products with highly uniform and structured pores of tuneable size in the submicrometre region.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Nd3eaff889fa54ee4b2bff4a09bfec767
    22 Ne29b9d7ecdc24102be63e8618af4829d
    23 sg:journal.1018957
    24 schema:name Porous silica via colloidal crystallization
    25 schema:pagination 447-448
    26 schema:productId N25d84e2f27724db6ab2168e3a0f23284
    27 N6e042e67fbf8471b9efc3c92d5def48f
    28 N7e8e112f1d284682acb130e39bab2284
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048835468
    30 https://doi.org/10.1038/38921
    31 schema:sdDatePublished 2019-04-11T12:13
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Nc73c0c45673d42f0a43f2f284de55f67
    34 schema:url http://www.nature.com/articles/38921
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N133f2975a77b4981a290934a06ead2b9 rdf:first sg:person.0611262100.27
    39 rdf:rest N4bd4e8ec09c54888bbf6180e7e042e19
    40 N25d84e2f27724db6ab2168e3a0f23284 schema:name readcube_id
    41 schema:value e8a48e868c28c9c42ee15834ae21bad399e0a40dd515cabe5a53577a76adb206
    42 rdf:type schema:PropertyValue
    43 N4bd4e8ec09c54888bbf6180e7e042e19 rdf:first sg:person.013243161163.38
    44 rdf:rest Nd97ef53fdc36498eb5f191f9a4992594
    45 N6e042e67fbf8471b9efc3c92d5def48f schema:name dimensions_id
    46 schema:value pub.1048835468
    47 rdf:type schema:PropertyValue
    48 N7e8e112f1d284682acb130e39bab2284 schema:name doi
    49 schema:value 10.1038/38921
    50 rdf:type schema:PropertyValue
    51 Nb5fd1907e935471590d9731334b1f980 rdf:first sg:person.01215271002.84
    52 rdf:rest rdf:nil
    53 Nc73c0c45673d42f0a43f2f284de55f67 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Nd3eaff889fa54ee4b2bff4a09bfec767 schema:issueNumber 6650
    56 rdf:type schema:PublicationIssue
    57 Nd97ef53fdc36498eb5f191f9a4992594 rdf:first sg:person.011262652461.80
    58 rdf:rest Nb5fd1907e935471590d9731334b1f980
    59 Ne29b9d7ecdc24102be63e8618af4829d schema:volumeNumber 389
    60 rdf:type schema:PublicationVolume
    61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Chemical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Macromolecular and Materials Chemistry
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1018957 schema:issn 0090-0028
    68 1476-4687
    69 schema:name Nature
    70 rdf:type schema:Periodical
    71 sg:person.011262652461.80 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
    72 schema:familyName Lobo
    73 schema:givenName R. F.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262652461.80
    75 rdf:type schema:Person
    76 sg:person.01215271002.84 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
    77 schema:familyName Lenhoff
    78 schema:givenName A. M.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215271002.84
    80 rdf:type schema:Person
    81 sg:person.013243161163.38 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
    82 schema:familyName Jede
    83 schema:givenName T. A.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243161163.38
    85 rdf:type schema:Person
    86 sg:person.0611262100.27 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
    87 schema:familyName Velev
    88 schema:givenName O. D.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611262100.27
    90 rdf:type schema:Person
    91 sg:pub.10.1038/359710a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004442060
    92 https://doi.org/10.1038/359710a0
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1038/361026a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017841251
    95 https://doi.org/10.1038/361026a0
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1038/361026b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007200204
    98 https://doi.org/10.1038/361026b0
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1038/382313a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008147902
    101 https://doi.org/10.1038/382313a0
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1038/385230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529405
    104 https://doi.org/10.1038/385230a0
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/385321a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034087757
    107 https://doi.org/10.1038/385321a0
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/385420a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053573777
    110 https://doi.org/10.1038/385420a0
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1021/ja00053a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055702551
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1126/science.245.4917.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538132
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1126/science.261.5126.1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062546861
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1126/science.272.5262.706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552909
    119 rdf:type schema:CreativeWork
    120 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
    121 schema:name Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...