Porous silica via colloidal crystallization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-10

AUTHORS

O. D. Velev, T. A. Jede, R. F. Lobo, A. M. Lenhoff

ABSTRACT

Microstructured porous silicas have potential applications in catalysis, separations, coatings, microelectronics and electro-optics, but methods for producing materials with uniform submicrometre pores have not been available. We have now developed a method in which modified colloidal crystals are used as templates for silica polymerization. This method yields products with highly uniform and structured pores of tuneable size in the submicrometre region. More... »

PAGES

447-448

Journal

TITLE

Nature

ISSUE

6650

VOLUME

389

Related Patents

  • Macroporous Photonic Crystal Membrane, Methods Of Making, And Methods Of Use
  • Endoprosthesis Coating
  • Medium Scale Carbon Nanotube Thin Film Integrated Circuits On Flexible Plastic Substrates
  • Stretchable And Foldable Electronic Devices
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Angle Switchable Crystalline Colloidal Array Films
  • Optical Systems Fabricated By Printing-Based Assembly
  • Methods Of Making Spatially Aligned Nanotubes And Nanotube Arrays
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Stretchable And Foldable Electronic Devices
  • Synthesis Of Macroporous Structures
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Optical Component Array Having Adjustable Curvature
  • Medical Device With A Porous Surface For Delivery Of A Therapeutic Agent
  • Waterproof Stretchable Optoelectronics
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Endoprostheses
  • Printable, Flexible And Stretchable Diamond For Thermal Management
  • Medical Devices Having Nanoporous Coatings For Controlled Therapeutic Agent Delivery
  • Stretchable And Foldable Electronic Devices
  • Transient Devices Designed To Undergo Programmable Transformations
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Thermally Managed Led Arrays Assembled By Printing
  • Extremely Stretchable Electronics
  • Optical Systems Fabricated By Printing-Based Assembly
  • Optical Systems Fabricated By Printing-Based Assembly
  • Medical Devices Having A Coating Of Inorganic Material
  • Conformable Actively Multiplexed High-Density Surface Electrode Array For Brain Interfacing
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Variably Porous Structures
  • Optical Systems Fabricated By Printing-Based Assembly
  • Composite Crystal Colloidal Array With Photochromic Member
  • Deformable Underlayer For Stent
  • Medical Devices With Selective Titanium Oxide Coatings
  • Endoprosthese
  • Stents With Ceramic Drug Reservoir Layer And Methods Of Making And Using The Same
  • Endoprosthesis Having A Non-Fouling Surface
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Extremely Stretchable Electronics
  • Embedding Thin Chips In Polymer
  • Drug-Releasing Stent With Ceramic-Containing Layer
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Thermally Responsive Crystalline Colloidal Arrays
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Catheter Balloon Having Stretchable Integrated Circuitry And Sensor Array
  • Methods And Applications Of Non-Planar Imaging Arrays
  • Temperature Sensitive Composite For Photonic Crystals
  • Medical Devices Having Inorganic Particle Layers
  • Coating For Medical Device Having Increased Surface Area
  • Stent With Embedded Material
  • High-Speed, High-Resolution Electrophysiology In-Vivo Using Conformal Electronics
  • Implantable Biomedical Devices On Bioresorbable Substrates
  • Hierarchically Ordered Porous Oxides
  • Conformable Actively Multiplexed High-Density Surface Electrode Array For Brain Interfacing
  • Endoprosthesis Coating
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Coatings For Medical Devices Comprising A Therapeutic Agent And A Metallic Material
  • Optical Systems Fabricated By Printing-Based Assembly
  • Endoprosthesis Coating
  • Optical Systems Fabricated By Printing-Based Assembly
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Articles Having Ceramic Coated Surfaces
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Drug Eluting Medical Devices Having Porous Layers
  • Medical Implants Including Iridium Oxide
  • Medical Devices With Drug-Eluting Coating
  • Method For Forming Hierarchically Ordered Porous Oxides
  • Methods And Devices For Fabricating Three-Dimensional Nanoscale Structures
  • Endoprosthesis Coating
  • Endoprosthesis With Coatings
  • Optical Systems Fabricated By Printing-Based Assembly
  • Systems, Methods, And Devices Using Stretchable Or Flexible Electronics For Medical Applications
  • Medical Device Coating By Laser Cladding
  • Transient Devices Designed To Undergo Programmable Transformations
  • Pattern Transfer Printing By Kinetic Control Of Adhesion To An Elastomeric Stamp
  • Flexible Electronic Structure
  • Stretchable And Foldable Electronic Devices
  • Medical Devices Comprising A Porous Metal Oxide Or Metal Material And A Polymer Coating For Delivering Therapeutic Agents
  • Flexible And Stretchable Electronic Systems For Epidermal Electronics
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Protective Cases With Integrated Electronics
  • Method Of Forming Mesoscopically Structured Material
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Endoprosthesis With Select Ceramic Morphology
  • Macroporous Photonic Crystal Membrane, Methods Of Making, And Methods Of Use
  • Implantable Biomedical Devices On Bioresorbable Substrates
  • Coated Medical Devices For Abluminal Drug Delivery
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/38921

    DOI

    http://dx.doi.org/10.1038/38921

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048835468


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA", 
              "id": "http://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Velev", 
            "givenName": "O. D.", 
            "id": "sg:person.0611262100.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611262100.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA", 
              "id": "http://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jede", 
            "givenName": "T. A.", 
            "id": "sg:person.013243161163.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243161163.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA", 
              "id": "http://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lobo", 
            "givenName": "R. F.", 
            "id": "sg:person.011262652461.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262652461.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA", 
              "id": "http://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenhoff", 
            "givenName": "A. M.", 
            "id": "sg:person.01215271002.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215271002.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/382313a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008147902", 
              "https://doi.org/10.1038/382313a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385321a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034087757", 
              "https://doi.org/10.1038/385321a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385230a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003529405", 
              "https://doi.org/10.1038/385230a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361026a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017841251", 
              "https://doi.org/10.1038/361026a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/359710a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004442060", 
              "https://doi.org/10.1038/359710a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385420a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053573777", 
              "https://doi.org/10.1038/385420a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-10", 
        "datePublishedReg": "1997-10-01", 
        "description": "Microstructured porous silicas have potential applications in catalysis, separations, coatings, microelectronics and electro-optics, but methods for producing materials with uniform submicrometre pores have not been available. We have now developed a method in which modified colloidal crystals are used as templates for silica polymerization. This method yields products with highly uniform and structured pores of tuneable size in the submicrometre region.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/38921", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6650", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "389"
          }
        ], 
        "keywords": [
          "porous silica", 
          "tuneable size", 
          "colloidal crystallization", 
          "colloidal crystals", 
          "structured pores", 
          "silica polymerization", 
          "potential applications", 
          "electro-optics", 
          "silica", 
          "pores", 
          "catalysis", 
          "polymerization", 
          "coatings", 
          "separation", 
          "crystallization", 
          "crystals", 
          "template", 
          "materials", 
          "products", 
          "microelectronics", 
          "method", 
          "applications", 
          "size", 
          "region", 
          "uniform submicrometre pores", 
          "submicrometre pores", 
          "submicrometre region"
        ], 
        "name": "Porous silica via colloidal crystallization", 
        "pagination": "447-448", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048835468"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/38921"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/38921", 
          "https://app.dimensions.ai/details/publication/pub.1048835468"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_276.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/38921"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/38921'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/38921'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/38921'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/38921'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      22 PREDICATES      60 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/38921 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 anzsrc-for:0306
    4 schema:author Nf4136175e3dc44dc870b18ebd640fb15
    5 schema:citation sg:pub.10.1038/359710a0
    6 sg:pub.10.1038/361026a0
    7 sg:pub.10.1038/382313a0
    8 sg:pub.10.1038/385230a0
    9 sg:pub.10.1038/385321a0
    10 sg:pub.10.1038/385420a0
    11 schema:datePublished 1997-10
    12 schema:datePublishedReg 1997-10-01
    13 schema:description Microstructured porous silicas have potential applications in catalysis, separations, coatings, microelectronics and electro-optics, but methods for producing materials with uniform submicrometre pores have not been available. We have now developed a method in which modified colloidal crystals are used as templates for silica polymerization. This method yields products with highly uniform and structured pores of tuneable size in the submicrometre region.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N01d80cf18430448d95d46afefef5baba
    18 Neeea671d3e804222b9806540dbcc0dd8
    19 sg:journal.1018957
    20 schema:keywords applications
    21 catalysis
    22 coatings
    23 colloidal crystallization
    24 colloidal crystals
    25 crystallization
    26 crystals
    27 electro-optics
    28 materials
    29 method
    30 microelectronics
    31 polymerization
    32 pores
    33 porous silica
    34 potential applications
    35 products
    36 region
    37 separation
    38 silica
    39 silica polymerization
    40 size
    41 structured pores
    42 submicrometre pores
    43 submicrometre region
    44 template
    45 tuneable size
    46 uniform submicrometre pores
    47 schema:name Porous silica via colloidal crystallization
    48 schema:pagination 447-448
    49 schema:productId N20bba6d1a9b8486ba0da28fc4a1f546f
    50 Nd1fa3671700b490eb2ca76f00ac5285b
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048835468
    52 https://doi.org/10.1038/38921
    53 schema:sdDatePublished 2022-01-01T18:07
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N549a55c207d04ec19ffc6442938fd539
    56 schema:url https://doi.org/10.1038/38921
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N01d80cf18430448d95d46afefef5baba schema:volumeNumber 389
    61 rdf:type schema:PublicationVolume
    62 N20bba6d1a9b8486ba0da28fc4a1f546f schema:name dimensions_id
    63 schema:value pub.1048835468
    64 rdf:type schema:PropertyValue
    65 N549a55c207d04ec19ffc6442938fd539 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nbd280ccff98a4f1e8caa54e444343af5 rdf:first sg:person.01215271002.84
    68 rdf:rest rdf:nil
    69 Nd1fa3671700b490eb2ca76f00ac5285b schema:name doi
    70 schema:value 10.1038/38921
    71 rdf:type schema:PropertyValue
    72 Ne483e401478c435198995e3bfb19dc78 rdf:first sg:person.011262652461.80
    73 rdf:rest Nbd280ccff98a4f1e8caa54e444343af5
    74 Neeea671d3e804222b9806540dbcc0dd8 schema:issueNumber 6650
    75 rdf:type schema:PublicationIssue
    76 Nf4136175e3dc44dc870b18ebd640fb15 rdf:first sg:person.0611262100.27
    77 rdf:rest Nf43987f8231541b9a7db51edcf3b75b9
    78 Nf43987f8231541b9a7db51edcf3b75b9 rdf:first sg:person.013243161163.38
    79 rdf:rest Ne483e401478c435198995e3bfb19dc78
    80 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Chemical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Macromolecular and Materials Chemistry
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Physical Chemistry (incl. Structural)
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1018957 schema:issn 0028-0836
    90 1476-4687
    91 schema:name Nature
    92 schema:publisher Springer Nature
    93 rdf:type schema:Periodical
    94 sg:person.011262652461.80 schema:affiliation grid-institutes:grid.33489.35
    95 schema:familyName Lobo
    96 schema:givenName R. F.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262652461.80
    98 rdf:type schema:Person
    99 sg:person.01215271002.84 schema:affiliation grid-institutes:grid.33489.35
    100 schema:familyName Lenhoff
    101 schema:givenName A. M.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215271002.84
    103 rdf:type schema:Person
    104 sg:person.013243161163.38 schema:affiliation grid-institutes:grid.33489.35
    105 schema:familyName Jede
    106 schema:givenName T. A.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243161163.38
    108 rdf:type schema:Person
    109 sg:person.0611262100.27 schema:affiliation grid-institutes:grid.33489.35
    110 schema:familyName Velev
    111 schema:givenName O. D.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611262100.27
    113 rdf:type schema:Person
    114 sg:pub.10.1038/359710a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004442060
    115 https://doi.org/10.1038/359710a0
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/361026a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017841251
    118 https://doi.org/10.1038/361026a0
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/382313a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008147902
    121 https://doi.org/10.1038/382313a0
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/385230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529405
    124 https://doi.org/10.1038/385230a0
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/385321a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034087757
    127 https://doi.org/10.1038/385321a0
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/385420a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053573777
    130 https://doi.org/10.1038/385420a0
    131 rdf:type schema:CreativeWork
    132 grid-institutes:grid.33489.35 schema:alternateName Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA
    133 schema:name Department of Chemical Engineering, University of Delaware, 19716, Newark, Delaware, USA
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...