Storage of hydrogen in single-walled carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-03

AUTHORS

A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben

ABSTRACT

Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles. More... »

PAGES

377-379

Journal

TITLE

Nature

ISSUE

6623

VOLUME

386

Related Patents

  • Method Of Purifying Carbon Nanotubes
  • Carbon Nanotube Structures, Carbon Nanotube Devices Using The Same And Method For Manufacturing Carbon Nanotube Structures
  • Carbonaceous Material For Hydrogen Storage And Method For Preparation Thereof, Carbonaceous Material Having Hydrogen Absorbed Therein And Method For Preparation Thereof, Cell And Fuel Cell Using Carbonaceous Material Having Hydrogen Absorbed Therein
  • Carbonaceous Material For Hydrogen Storage, And Method For Preparation Thereof, Carbonaceous Material Having Hydrogen Absorbed Therein And Method For Preparation Thereof, Cell And Fuel Cell Using Carbonaceous Material Having Hydrogen Absorbed Therein
  • Electron-Emitting Device, Electron Source, Image Forming Apparatus, And Electron-Emitting Apparatus
  • Free-Standing And Aligned Carbon Nanotubes And Synthesis Thereof
  • Structure And A Process For Its Production
  • Actuators Using Double-Layer Charging Of High Surface Area Materials
  • Electron-Emitting Device, Electron-Emitting Apparatus, Image Display Apparatus, And Light-Emitting Apparatus
  • Carbonaceous Material For Hydrogen Storage And Method For Preparation Thereof, Carbonaceous Material Having Hydrogen Absorbed Therein And Method For Preparation Thereof, Cell And Fuel Cell Using Carbonaceous Material Having Hydrogen Absorbed Therein
  • Carbonaceous Material For Hydrogen Storage And Method For Preparation Thereof, Carbonaceous Material Having Hydrogen Absorbed Therein And Method For Preparation Thereof, Cell And Fuel Cell Using Carbonaceous Material Having Hydrogen Absorbed Therein
  • Amorphous Nano-Scale Carbon Tube And Production Method Therefor
  • A Method For The Operation Of A Memory - And System For Gas Feed System
  • Method For Producing Electron-Emitting Device And Electron-Emitting Apparatus
  • Catalyst Used To Form Carbon Fiber, Method Of Making The Same And Electron Emitting Device, Electron Source, Image Forming Apparatus, Secondary Battery And Body For Storing Hydrogen
  • Electron-Emitting Device, Electron Source And Image-Forming Apparatus, And Method For Manufacturing Electron Emitting Device
  • Metal-Doped Single-Walled Carbon Nanotubes And Production Thereof
  • Molecular Nanowires From Single Walled Carbon Nanotubes
  • Synthesis Of Carbon Nanotubes Filled With Palladium Nanoparticles Using Arc Discharge In Solution
  • Devices Containing A Carbon Nanotube
  • Electronic Device Having Catalyst Used To Form Carbon Fiber According To Raman Spectrum Characteristics
  • Solutions Of Carbon Nanohorns, Method For Making Same And Uses Thereof
  • Cryogenic Cooling System
  • Manufacture Method For Electron-Emitting Device, Electron Source, Light-Emitting Apparatus, And Image Forming Apparatus
  • Electron-Emitting Device, Electron Source, Image-Forming Apparatus, And Method For Producing Electron-Emitting Device And Electron-Emitting Apparatus
  • Carbon Nanotube?Carbon Nanohorn Complex And Method For Producing The Same
  • Process For Separating Metallic From Semiconducting Single-Walled Carbon Nanotubes
  • Electron Emitting Device, Electron Source, And Image Forming Apparatus
  • Class Of Tunable Gas Storage And Sensor Materials
  • Solutions Of Carbon Nanohorns, Method For Making Same And Uses Thereof
  • Electron-Emitting Device, Electron Source, Image-Forming Apparatus, And Method For Producing Electron-Emitting Device And Electron-Emitting Apparatus
  • Carbon Media For Storage Of Hydrogen
  • Electron-Emitting Device, Electron-Emitting Apparatus, Image Display Apparatus, And Light-Emitting Apparatus
  • Carbon Nanotube Structures And Method For Manufacturing The Same
  • Hydrogen Storage In Nanostructure With Physisorption
  • Electronic Device Containing A Carbon Nanotube
  • Purification Of Carbon Filaments And Their Use In Storing Hydrogen
  • Device Comprising Carbon Nanotube Field Emitter Structure And Process For Forming Device
  • Method Of Manufacturing Electron-Emitting Device And Electron Source
  • Method Of Manufacturing Electron-Emitting Element Using Catalyst To Grow Carbon Fibers Between Opposite Electrodes
  • Process For Fabricating Article Comprising Aligned Truncated Carbon Nanotubes
  • Class Of Tunable Gas Storage And Sensor Materials
  • Electron-Emitting Device, Electron Source, Image Forming Apparatus, And Method Of Manufacturing Electron-Emitting Device And Electron Source
  • Electron-Emitting Device, Electron-Emitting Apparatus, Image Display Apparatus, And Light-Emitting Apparatus
  • Electronic Device Containing Carbon Nanotubes
  • Method For Producing A Porous Carbon Material And Porous Carbon Material Which Can Be Produced By The Process
  • Method For Producing A Porous Carbon Material And Porous Carbon Material Which Can Be Produced By The Process
  • A Method For Storing Gas
  • Electron Emitting Device, Electron Source, And Image Forming Apparatus
  • Carbonaceous Material For Hydrogen Storage And Method For Preparation Thereof, Carbonaceous Material Having Hydrogen Absorbed Therein And Method For Preparation Thereof, Cell And Fuel Cell Using Carbonaceous Material Having Hydrogen Absorbed Therein
  • Method Of Manufacturing An Electronic Device Containing A Carbon Nanotube
  • Electron-Emitting Devices, Electron Sources, And Image-Forming Apparatus
  • Electron-Emitting Device, Electron Source And Image-Forming Apparatus, And Method For Manufacturing Electron Emitting Device
  • Electron-Emitting Device, Electron Source And Image-Forming Apparatus, And Method For Manufacturing Electron Emitting Device
  • In-Situ Synthesis Of Carbon Nanotubes Filled With Metallic Nanoparticles Using Arc Discharge In Solution
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/386377a0

    DOI

    http://dx.doi.org/10.1038/386377a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019060429


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Dillon", 
            "givenName": "A. C.", 
            "id": "sg:person.01321707622.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321707622.67"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Jones", 
            "givenName": "K. M.", 
            "id": "sg:person.014001052761.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014001052761.52"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Bekkedahl", 
            "givenName": "T. A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Kiang", 
            "givenName": "C. H.", 
            "id": "sg:person.0726366456.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726366456.08"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Bethune", 
            "givenName": "D. S.", 
            "id": "sg:person.015276774064.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276774064.06"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Heben", 
            "givenName": "M. J.", 
            "id": "sg:person.01232153473.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232153473.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/362522a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001467966", 
              "https://doi.org/10.1038/362522a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(92)90325-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002236631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(92)90325-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002236631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00268978700102151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005154515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0360-3199(89)90001-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007652603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0360-3199(89)90001-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007652603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2426447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019974458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9517(80)90042-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024586825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/363605a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027221895", 
              "https://doi.org/10.1038/363605a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/362520a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033060776", 
              "https://doi.org/10.1038/362520a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-4332(89)90489-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038982761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10408437808243436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051771148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j150579a014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055695230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphyscol:1977402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056996737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.467392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058045397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.265.5180.1850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062548878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5274.483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1180/claymin.1992.027.4.04", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064113501"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-03", 
        "datePublishedReg": "1997-03-01", 
        "description": "Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/386377a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6623", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "386"
          }
        ], 
        "name": "Storage of hydrogen in single-walled carbon nanotubes", 
        "pagination": "377-379", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5ad10065a26ddf6c6cc1458b66da3b2c3315e13f5fc33a8b3d937b7c1a7a6f00"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/386377a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019060429"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/386377a0", 
          "https://app.dimensions.ai/details/publication/pub.1019060429"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/386377a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/386377a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/386377a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/386377a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/386377a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/386377a0 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N7938e3631b98427ab38d35453f865156
    4 schema:citation sg:pub.10.1038/362520a0
    5 sg:pub.10.1038/362522a0
    6 sg:pub.10.1038/363605a0
    7 https://doi.org/10.1016/0021-9517(80)90042-1
    8 https://doi.org/10.1016/0038-1098(92)90325-4
    9 https://doi.org/10.1016/0169-4332(89)90489-3
    10 https://doi.org/10.1016/0360-3199(89)90001-3
    11 https://doi.org/10.1021/j150579a014
    12 https://doi.org/10.1051/jphyscol:1977402
    13 https://doi.org/10.1063/1.467392
    14 https://doi.org/10.1080/00268978700102151
    15 https://doi.org/10.1080/10408437808243436
    16 https://doi.org/10.1103/physrevlett.69.2689
    17 https://doi.org/10.1126/science.265.5180.1850
    18 https://doi.org/10.1126/science.273.5274.483
    19 https://doi.org/10.1149/1.2426447
    20 https://doi.org/10.1180/claymin.1992.027.4.04
    21 schema:datePublished 1997-03
    22 schema:datePublishedReg 1997-03-01
    23 schema:description Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N29a7eb9d161e44849391171973977bda
    28 Ncf07d7c724ae4ca68569847811b80058
    29 sg:journal.1018957
    30 schema:name Storage of hydrogen in single-walled carbon nanotubes
    31 schema:pagination 377-379
    32 schema:productId N1ed82eb571c54f728212e5c7155b09c4
    33 Nbb94610da7664a8baa58cac70b4a2419
    34 Nf9c0ed19802d443494899c471b41ba0a
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019060429
    36 https://doi.org/10.1038/386377a0
    37 schema:sdDatePublished 2019-04-11T01:46
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N00be00b8c1004bfbb6ae2d40355edbf1
    40 schema:url http://www.nature.com/articles/386377a0
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N00be00b8c1004bfbb6ae2d40355edbf1 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N16893d55d57747f1b8b724dc3df468a3 rdf:first sg:person.0726366456.08
    47 rdf:rest N48cf2fa6fd754f5aa102dca9156c1574
    48 N1ed82eb571c54f728212e5c7155b09c4 schema:name readcube_id
    49 schema:value 5ad10065a26ddf6c6cc1458b66da3b2c3315e13f5fc33a8b3d937b7c1a7a6f00
    50 rdf:type schema:PropertyValue
    51 N208f0b15f23649129ab2a9ebc6768c6a rdf:first sg:person.01232153473.41
    52 rdf:rest rdf:nil
    53 N29a7eb9d161e44849391171973977bda schema:volumeNumber 386
    54 rdf:type schema:PublicationVolume
    55 N48cf2fa6fd754f5aa102dca9156c1574 rdf:first sg:person.015276774064.06
    56 rdf:rest N208f0b15f23649129ab2a9ebc6768c6a
    57 N7638988b1f7f47998b38abe6ddaed2df rdf:first sg:person.014001052761.52
    58 rdf:rest N7b509997fb704bbbac6f88ba564400c7
    59 N7938e3631b98427ab38d35453f865156 rdf:first sg:person.01321707622.67
    60 rdf:rest N7638988b1f7f47998b38abe6ddaed2df
    61 N7b509997fb704bbbac6f88ba564400c7 rdf:first N945a5aaefb1048d4bb9da4b4b72988ec
    62 rdf:rest N16893d55d57747f1b8b724dc3df468a3
    63 N945a5aaefb1048d4bb9da4b4b72988ec schema:familyName Bekkedahl
    64 schema:givenName T. A.
    65 rdf:type schema:Person
    66 Nbb94610da7664a8baa58cac70b4a2419 schema:name dimensions_id
    67 schema:value pub.1019060429
    68 rdf:type schema:PropertyValue
    69 Ncf07d7c724ae4ca68569847811b80058 schema:issueNumber 6623
    70 rdf:type schema:PublicationIssue
    71 Nf9c0ed19802d443494899c471b41ba0a schema:name doi
    72 schema:value 10.1038/386377a0
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Chemical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Physical Chemistry (incl. Structural)
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1018957 schema:issn 0090-0028
    81 1476-4687
    82 schema:name Nature
    83 rdf:type schema:Periodical
    84 sg:person.01232153473.41 schema:familyName Heben
    85 schema:givenName M. J.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232153473.41
    87 rdf:type schema:Person
    88 sg:person.01321707622.67 schema:familyName Dillon
    89 schema:givenName A. C.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321707622.67
    91 rdf:type schema:Person
    92 sg:person.014001052761.52 schema:familyName Jones
    93 schema:givenName K. M.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014001052761.52
    95 rdf:type schema:Person
    96 sg:person.015276774064.06 schema:familyName Bethune
    97 schema:givenName D. S.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276774064.06
    99 rdf:type schema:Person
    100 sg:person.0726366456.08 schema:familyName Kiang
    101 schema:givenName C. H.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726366456.08
    103 rdf:type schema:Person
    104 sg:pub.10.1038/362520a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033060776
    105 https://doi.org/10.1038/362520a0
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1038/362522a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001467966
    108 https://doi.org/10.1038/362522a0
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1038/363605a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027221895
    111 https://doi.org/10.1038/363605a0
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0021-9517(80)90042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024586825
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0038-1098(92)90325-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002236631
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0169-4332(89)90489-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982761
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0360-3199(89)90001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007652603
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1021/j150579a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055695230
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1051/jphyscol:1977402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056996737
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/1.467392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058045397
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1080/00268978700102151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005154515
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1080/10408437808243436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051771148
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevlett.69.2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805581
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1126/science.265.5180.1850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548878
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1126/science.273.5274.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553701
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1149/1.2426447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019974458
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1180/claymin.1992.027.4.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064113501
    140 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...