In vivo dendritic calcium dynamics in neocortical pyramidal neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-01

AUTHORS

K Svoboda, W Denk, D Kleinfeld, D W Tank

ABSTRACT

The dendrites of mammalian pyramidal neurons contain a rich collection of active conductances that can support Na+ and Ca2+ action potentials (for a review see ref. 1). The presence, site of initiation, and direction of propagation of Na+ and Ca2+ action potentials are, however, controversial, and seem to be sensitive to resting membrane potential, ionic composition, and degree of channel inactivation, and depend on the intensity and pattern of synaptic stimulation. This makes it difficult to extrapolate from in vitro experiments to the situation in the intact brain. Here we show that two-photon excitation laser scanning microscopy can penetrate the highly scattering tissue of the intact brain. We used this property to measure sensory stimulus-induced dendritic [Ca2+] dynamics of layer 2/3 pyramidal neurons of the rat primary vibrissa (Sm1) cortex in vivo. Simultaneous recordings of intracellular voltage and dendritic [Ca2+] dynamics during whisker stimulation or current injection showed increases in [Ca2+] only in coincidence with Na+ action potentials. The amplitude of these [Ca2+] transients at a given location was approximately proportional to the number of Na+ action potentials in a short burst. The amplitude for a given number of action potentials was greatest in the proximal apical dendrite and declined steeply with increasing distance from the soma, with little Ca2+ accumulation in the most distal branches, in layer 1. This suggests that widespread Ca2+ action potentials were not generated, and any significant [Ca2+] increase depends on somatically triggered Na+ action potentials. More... »

PAGES

161-165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/385161a0

DOI

http://dx.doi.org/10.1038/385161a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024578450

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8990119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dendrites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pyramidal Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sodium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibrissae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Biological Computation Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svoboda", 
        "givenName": "K", 
        "id": "sg:person.01010577452.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010577452.70"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Denk", 
        "givenName": "W", 
        "id": "sg:person.0601345626.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601345626.67"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kleinfeld", 
        "givenName": "D", 
        "id": "sg:person.01022600555.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022600555.18"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Tank", 
        "givenName": "D W", 
        "id": "sg:person.0654414774.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654414774.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1113/jphysiol.1995.sp020611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000514502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)80091-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002646954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/367069a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002816609", 
          "https://doi.org/10.1038/367069a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0896-6273(94)90457-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012389814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(90)90185-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012885568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(90)90185-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012885568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378612a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013902588", 
          "https://doi.org/10.1038/378612a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1995.sp020595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018432971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357244a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020130464", 
          "https://doi.org/10.1038/357244a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/341533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020866538", 
          "https://doi.org/10.1038/341533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375682a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022091505", 
          "https://doi.org/10.1038/375682a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.18.9921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025721420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(88)91118-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025734671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(88)91118-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025734671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(00)00096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029654822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79653-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044329311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9861(19961104)375:1<89::aid-cne6>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045562092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(94)90189-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050148470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(94)90189-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050148470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-4388(94)90101-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050352793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-4388(94)90101-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050352793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.2.986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051906889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2321027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062532641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7716524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7716525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649030"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-01", 
    "datePublishedReg": "1997-01-01", 
    "description": "The dendrites of mammalian pyramidal neurons contain a rich collection of active conductances that can support Na+ and Ca2+ action potentials (for a review see ref. 1). The presence, site of initiation, and direction of propagation of Na+ and Ca2+ action potentials are, however, controversial, and seem to be sensitive to resting membrane potential, ionic composition, and degree of channel inactivation, and depend on the intensity and pattern of synaptic stimulation. This makes it difficult to extrapolate from in vitro experiments to the situation in the intact brain. Here we show that two-photon excitation laser scanning microscopy can penetrate the highly scattering tissue of the intact brain. We used this property to measure sensory stimulus-induced dendritic [Ca2+] dynamics of layer 2/3 pyramidal neurons of the rat primary vibrissa (Sm1) cortex in vivo. Simultaneous recordings of intracellular voltage and dendritic [Ca2+] dynamics during whisker stimulation or current injection showed increases in [Ca2+] only in coincidence with Na+ action potentials. The amplitude of these [Ca2+] transients at a given location was approximately proportional to the number of Na+ action potentials in a short burst. The amplitude for a given number of action potentials was greatest in the proximal apical dendrite and declined steeply with increasing distance from the soma, with little Ca2+ accumulation in the most distal branches, in layer 1. This suggests that widespread Ca2+ action potentials were not generated, and any significant [Ca2+] increase depends on somatically triggered Na+ action potentials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/385161a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6612", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "385"
      }
    ], 
    "name": "In vivo dendritic calcium dynamics in neocortical pyramidal neurons", 
    "pagination": "161-165", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75177123ac72afe03e6149d1eed135106ea477b18a7762f517aeb53c3edbfb17"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8990119"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/385161a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024578450"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/385161a0", 
      "https://app.dimensions.ai/details/publication/pub.1024578450"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v385/n6612/full/385161a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/385161a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/385161a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/385161a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/385161a0'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      60 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/385161a0 schema:about N2f4383ba962b4357bd12755fac4b735c
2 N58f2e741e4624a3b8f0017b584188133
3 N71a8c59db8684e529fde18453936fbac
4 N81b45b1d72fb424097d81baa98291793
5 Na1826737641a43c3900f7f36a067612d
6 Nad33409eebc94c4697c261d718301cc3
7 Nb2c593fb53d84558bebabb06cf7019c1
8 Nc885c53cf7a1464ab7bd5c72df75ab29
9 Ncd41f299097b424798004040eb9bcfac
10 Nff6b5dde32114b7a809fa34f053d1213
11 anzsrc-for:11
12 anzsrc-for:1109
13 schema:author Nab46d08b1d0e443f81044ba375977601
14 schema:citation sg:pub.10.1038/341533a0
15 sg:pub.10.1038/357244a0
16 sg:pub.10.1038/367069a0
17 sg:pub.10.1038/375682a0
18 sg:pub.10.1038/378612a0
19 https://doi.org/10.1002/(sici)1096-9861(19961104)375:1<89::aid-cne6>3.0.co;2-k
20 https://doi.org/10.1016/0006-8993(88)91118-3
21 https://doi.org/10.1016/0165-0270(94)90189-9
22 https://doi.org/10.1016/0166-2236(90)90185-d
23 https://doi.org/10.1016/0896-6273(94)90457-x
24 https://doi.org/10.1016/0959-4388(94)90101-5
25 https://doi.org/10.1016/s0006-3495(96)79653-4
26 https://doi.org/10.1016/s0896-6273(00)80091-4
27 https://doi.org/10.1016/s0960-9822(00)00096-8
28 https://doi.org/10.1073/pnas.76.2.986
29 https://doi.org/10.1073/pnas.93.18.9921
30 https://doi.org/10.1113/jphysiol.1995.sp020595
31 https://doi.org/10.1113/jphysiol.1995.sp020611
32 https://doi.org/10.1126/science.2321027
33 https://doi.org/10.1126/science.7716524
34 https://doi.org/10.1126/science.7716525
35 schema:datePublished 1997-01
36 schema:datePublishedReg 1997-01-01
37 schema:description The dendrites of mammalian pyramidal neurons contain a rich collection of active conductances that can support Na+ and Ca2+ action potentials (for a review see ref. 1). The presence, site of initiation, and direction of propagation of Na+ and Ca2+ action potentials are, however, controversial, and seem to be sensitive to resting membrane potential, ionic composition, and degree of channel inactivation, and depend on the intensity and pattern of synaptic stimulation. This makes it difficult to extrapolate from in vitro experiments to the situation in the intact brain. Here we show that two-photon excitation laser scanning microscopy can penetrate the highly scattering tissue of the intact brain. We used this property to measure sensory stimulus-induced dendritic [Ca2+] dynamics of layer 2/3 pyramidal neurons of the rat primary vibrissa (Sm1) cortex in vivo. Simultaneous recordings of intracellular voltage and dendritic [Ca2+] dynamics during whisker stimulation or current injection showed increases in [Ca2+] only in coincidence with Na+ action potentials. The amplitude of these [Ca2+] transients at a given location was approximately proportional to the number of Na+ action potentials in a short burst. The amplitude for a given number of action potentials was greatest in the proximal apical dendrite and declined steeply with increasing distance from the soma, with little Ca2+ accumulation in the most distal branches, in layer 1. This suggests that widespread Ca2+ action potentials were not generated, and any significant [Ca2+] increase depends on somatically triggered Na+ action potentials.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf Na49e085b371643a2889a3541be0725eb
42 Naa1bc4ff43604cb8b731bf0ad51973b5
43 sg:journal.1018957
44 schema:name In vivo dendritic calcium dynamics in neocortical pyramidal neurons
45 schema:pagination 161-165
46 schema:productId N14e7752e7d7746f9ad8c8be4a893bfb6
47 N73a9d42f6f7b484b8ccaca40ad73cca1
48 N77cbeb9e4b40450787eaf56e459f583f
49 Nad749aa9f04b40bbabebaf28c5585210
50 Ndc0f24cecc1c4ee99cf0c1e5744c7557
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024578450
52 https://doi.org/10.1038/385161a0
53 schema:sdDatePublished 2019-04-10T12:58
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ne29254e68d0f40b1a8afa357ba94cfca
56 schema:url http://www.nature.com/nature/journal/v385/n6612/full/385161a0.html
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N14e7752e7d7746f9ad8c8be4a893bfb6 schema:name pubmed_id
61 schema:value 8990119
62 rdf:type schema:PropertyValue
63 N2f4383ba962b4357bd12755fac4b735c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name In Vitro Techniques
65 rdf:type schema:DefinedTerm
66 N44d45d95d8a24fd4b6d6b19824ad6140 schema:name Biological Computation Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
67 rdf:type schema:Organization
68 N58f2e741e4624a3b8f0017b584188133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Vibrissae
70 rdf:type schema:DefinedTerm
71 N60fcd72a11ca46de943d14ba31b80f7b rdf:first sg:person.01022600555.18
72 rdf:rest Nac5c06befd594a02b04a913fd7b17363
73 N71a8c59db8684e529fde18453936fbac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Animals
75 rdf:type schema:DefinedTerm
76 N73a9d42f6f7b484b8ccaca40ad73cca1 schema:name readcube_id
77 schema:value 75177123ac72afe03e6149d1eed135106ea477b18a7762f517aeb53c3edbfb17
78 rdf:type schema:PropertyValue
79 N77cbeb9e4b40450787eaf56e459f583f schema:name nlm_unique_id
80 schema:value 0410462
81 rdf:type schema:PropertyValue
82 N81b45b1d72fb424097d81baa98291793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Rats
84 rdf:type schema:DefinedTerm
85 N990d84ce3eb54a13bb273f584c71ccf8 rdf:first sg:person.0601345626.67
86 rdf:rest N60fcd72a11ca46de943d14ba31b80f7b
87 Na1826737641a43c3900f7f36a067612d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Cerebral Cortex
89 rdf:type schema:DefinedTerm
90 Na49e085b371643a2889a3541be0725eb schema:volumeNumber 385
91 rdf:type schema:PublicationVolume
92 Naa1bc4ff43604cb8b731bf0ad51973b5 schema:issueNumber 6612
93 rdf:type schema:PublicationIssue
94 Nab46d08b1d0e443f81044ba375977601 rdf:first sg:person.01010577452.70
95 rdf:rest N990d84ce3eb54a13bb273f584c71ccf8
96 Nac5c06befd594a02b04a913fd7b17363 rdf:first sg:person.0654414774.02
97 rdf:rest rdf:nil
98 Nad33409eebc94c4697c261d718301cc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Dendrites
100 rdf:type schema:DefinedTerm
101 Nad749aa9f04b40bbabebaf28c5585210 schema:name dimensions_id
102 schema:value pub.1024578450
103 rdf:type schema:PropertyValue
104 Nb2c593fb53d84558bebabb06cf7019c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Calcium
106 rdf:type schema:DefinedTerm
107 Nc885c53cf7a1464ab7bd5c72df75ab29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Pyramidal Cells
109 rdf:type schema:DefinedTerm
110 Ncd41f299097b424798004040eb9bcfac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Sodium
112 rdf:type schema:DefinedTerm
113 Ndc0f24cecc1c4ee99cf0c1e5744c7557 schema:name doi
114 schema:value 10.1038/385161a0
115 rdf:type schema:PropertyValue
116 Ne29254e68d0f40b1a8afa357ba94cfca schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nff6b5dde32114b7a809fa34f053d1213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Microscopy
120 rdf:type schema:DefinedTerm
121 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
122 schema:name Medical and Health Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
125 schema:name Neurosciences
126 rdf:type schema:DefinedTerm
127 sg:journal.1018957 schema:issn 0090-0028
128 1476-4687
129 schema:name Nature
130 rdf:type schema:Periodical
131 sg:person.01010577452.70 schema:affiliation N44d45d95d8a24fd4b6d6b19824ad6140
132 schema:familyName Svoboda
133 schema:givenName K
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010577452.70
135 rdf:type schema:Person
136 sg:person.01022600555.18 schema:familyName Kleinfeld
137 schema:givenName D
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022600555.18
139 rdf:type schema:Person
140 sg:person.0601345626.67 schema:familyName Denk
141 schema:givenName W
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601345626.67
143 rdf:type schema:Person
144 sg:person.0654414774.02 schema:familyName Tank
145 schema:givenName D W
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654414774.02
147 rdf:type schema:Person
148 sg:pub.10.1038/341533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020866538
149 https://doi.org/10.1038/341533a0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/357244a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020130464
152 https://doi.org/10.1038/357244a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/367069a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002816609
155 https://doi.org/10.1038/367069a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/375682a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022091505
158 https://doi.org/10.1038/375682a0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/378612a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013902588
161 https://doi.org/10.1038/378612a0
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/(sici)1096-9861(19961104)375:1<89::aid-cne6>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1045562092
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0006-8993(88)91118-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025734671
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0165-0270(94)90189-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050148470
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0166-2236(90)90185-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1012885568
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0896-6273(94)90457-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012389814
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0959-4388(94)90101-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050352793
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0006-3495(96)79653-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044329311
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0896-6273(00)80091-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002646954
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0960-9822(00)00096-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029654822
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.76.2.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051906889
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.93.18.9921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025721420
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1113/jphysiol.1995.sp020595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018432971
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1113/jphysiol.1995.sp020611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000514502
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.2321027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532641
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.7716524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649029
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.7716525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649030
194 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...