A neuronal learning rule for sub-millisecond temporal coding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-09

AUTHORS

Wulfram Gerstner, Richard Kempter, J. Leo van Hemmen, Hermann Wagner

ABSTRACT

A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3–8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear. More... »

PAGES

76-78

Journal

TITLE

Nature

ISSUE

6595

VOLUME

383

Related Patents

  • Apparatus And Methods For Distance Estimation Using Multiple Image Sensors
  • Temporal Winner Takes All Spiking Neuron Network Sensory Processing Apparatus And Methods
  • Apparatus And Methods For Detection Of Objects Using Broadband Signals
  • Apparatus And Methods For Pulse-Code Invariant Object Recognition
  • Adaptive Plasticity Apparatus And Methods For Spiking Neuron Network
  • Apparatus And Methods For Computerized Object Identification
  • Sensory Input Processing Apparatus And Methods
  • Spiking Neuron Network Apparatus And Methods
  • Spiking Neuron Network Apparatus And Methods For Encoding Of Sensory Data
  • Modulated Plasticity Apparatus And Methods For Spiking Neuron Network
  • Apparatus And Methods For Encoding Of Sensory Data Using Artificial Spiking Neurons
  • Apparatus And Methods For Robotic Operation Using Video Imagery
  • Optical Detection Apparatus And Methods
  • Apparatus And Methods For Tracking Salient Features
  • Apparatus And Methods For Efficacy Balancing In A Spiking Neuron Network
  • Apparatus And Methods For Computerized Object Identification
  • Spiking Neural Network Feedback Apparatus And Methods
  • Retinal Apparatus And Methods
  • Apparatus And Methods For Encoding Vector Into Pulse-Code Output
  • Encoding And Decoding Information
  • Apparatus And Methods For Temporal Proximity Detection
  • Methods And Apparatus For Tracking Objects Using Saliency
  • Encoding And Decoding Information
  • Apparatus And Methods For Distance Estimation Using Stereo Imagery
  • Increased Dynamic Range Artificial Neuron Network Apparatus And Methods
  • Apparatus And Methods For Saliency Detection Based On Color Occurrence Analysis
  • Salient Features Tracking Apparatus And Methods Using Visual Initialization
  • Apparatus And Methods For Polychronous Encoding And Multiplexing In Neuronal Prosthetic Devices
  • Apparatus And Methods For Temporally Proximate Object Recognition
  • Sensory Processing Apparatus And Methods
  • Conditional Plasticity Spiking Neuron Network Apparatus And Methods
  • Sensory Input Processing Apparatus In A Spiking Neural Network
  • Rate Stabilization Through Plasticity In Spiking Neuron Network
  • Spiking Neuron Sensory Processing Apparatus And Methods For Saliency Detection
  • Apparatus And Methods For Backward Propagation Of Errors In A Spiking Neuron Network
  • Apparatus And Methods For Processing Inputs In An Artificial Neuron Network
  • Encoding And Decoding Information
  • Apparatus And Methods For Real Time Estimation Of Differential Motion In Live Video
  • Invariant Pulse Latency Coding Systems And Methods
  • Contrast Enhancement Spiking Neuron Network Sensory Processing Apparatus And Methods
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/383076a0

    DOI

    http://dx.doi.org/10.1038/383076a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013183215

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8779718


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Auditory Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Auditory Perception", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Birds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hearing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons, Afferent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reaction Time", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
                "Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerstner", 
            "givenName": "Wulfram", 
            "id": "sg:person.01216526014.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216526014.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kempter", 
            "givenName": "Richard", 
            "id": "sg:person.0674060607.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674060607.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Hemmen", 
            "givenName": "J. Leo", 
            "id": "sg:person.01066247102.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Fakultat f\u00fcr Chemie und Biologie, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
                "RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagner", 
            "givenName": "Hermann", 
            "id": "sg:person.016112362512.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016112362512.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00663105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033821927", 
              "https://doi.org/10.1007/bf00663105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00962720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041421686", 
              "https://doi.org/10.1007/bf00962720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361031a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042608618", 
              "https://doi.org/10.1038/361031a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4320-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044303677", 
              "https://doi.org/10.1007/978-1-4612-4320-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00204701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049161196", 
              "https://doi.org/10.1007/bf00204701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00612561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029330619", 
              "https://doi.org/10.1007/bf00612561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376033a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030832995", 
              "https://doi.org/10.1038/376033a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-09", 
        "datePublishedReg": "1996-09-01", 
        "description": "A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3\u20138. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 \u03bcs, has an accuracy of 25 \u03bcs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/383076a0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6595", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "383"
          }
        ], 
        "keywords": [
          "learning rule", 
          "unsupervised Hebbian learning rule", 
          "Hebbian learning rule", 
          "neuronal learning rules", 
          "temporal coding", 
          "neural information processing", 
          "coding", 
          "computer simulation", 
          "signal arrival time", 
          "random delays", 
          "rules", 
          "select connections", 
          "necessary degree", 
          "information processing", 
          "correct delay", 
          "delay", 
          "owls", 
          "arrival time", 
          "relevant signals", 
          "processing", 
          "example", 
          "accuracy", 
          "integrate", 
          "signals", 
          "input", 
          "system", 
          "simulations", 
          "orders of magnitude", 
          "auditory system", 
          "order", 
          "connection", 
          "time", 
          "microseconds", 
          "coherence", 
          "development", 
          "fire", 
          "independent groups", 
          "questions", 
          "importance", 
          "virtue", 
          "central question", 
          "neurons", 
          "degree", 
          "distribution", 
          "potential", 
          "range", 
          "\u03bcs", 
          "time constants", 
          "magnitude", 
          "observations", 
          "\u03bcs", 
          "study", 
          "paradox", 
          "barn owl", 
          "width", 
          "firing", 
          "height", 
          "group", 
          "ear", 
          "neuronal firing", 
          "problem", 
          "modelling study", 
          "right ear", 
          "constants", 
          "broad distribution", 
          "excitatory postsynaptic potentials", 
          "laminar nucleus", 
          "postsynaptic potentials", 
          "presynaptic signals", 
          "ontogenetic development", 
          "axons", 
          "nucleus", 
          "clear yet3", 
          "yet3", 
          "neuronal processes involved9", 
          "processes involved9", 
          "involved9", 
          "half-maximum height", 
          "sub-millisecond temporal coding"
        ], 
        "name": "A neuronal learning rule for sub-millisecond temporal coding", 
        "pagination": "76-78", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013183215"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/383076a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8779718"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/383076a0", 
          "https://app.dimensions.ai/details/publication/pub.1013183215"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_275.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/383076a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/383076a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/383076a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/383076a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/383076a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    237 TRIPLES      22 PREDICATES      122 URIs      107 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/383076a0 schema:about N211ed3ae69e14f2b88df2ece2cd243cc
    2 N27a5d939731349ee86025d020dfcf40a
    3 N2d12e1f9524e426d97b8fc560a7ede6a
    4 N2d4aa683f3d54112a5449a22dfa74c0e
    5 N5aa84c5de20747d19d3b605d4b568d20
    6 N8b8073d484114a53b5ff10cda9eda40a
    7 Nadd51bf8e9cf474baa0d431a77751ce1
    8 Nc81a4c250c42488886227b9c2a3824f0
    9 Nc8e92a35c7314c1283f04e850f6fb9ec
    10 Nd6a743af25774107b9c68a13ca16e487
    11 anzsrc-for:11
    12 anzsrc-for:1109
    13 schema:author N3bc21252b12b444ab999ac82053c363b
    14 schema:citation sg:pub.10.1007/978-1-4612-4320-5_3
    15 sg:pub.10.1007/bf00204701
    16 sg:pub.10.1007/bf00612561
    17 sg:pub.10.1007/bf00663105
    18 sg:pub.10.1007/bf00962720
    19 sg:pub.10.1038/361031a0
    20 sg:pub.10.1038/376033a0
    21 schema:datePublished 1996-09
    22 schema:datePublishedReg 1996-09-01
    23 schema:description A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3–8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N5486229df64a437ba91e77fa64d65984
    28 Na57efd7810dd402287d6748e1e42b507
    29 sg:journal.1018957
    30 schema:keywords Hebbian learning rule
    31 accuracy
    32 arrival time
    33 auditory system
    34 axons
    35 barn owl
    36 broad distribution
    37 central question
    38 clear yet3
    39 coding
    40 coherence
    41 computer simulation
    42 connection
    43 constants
    44 correct delay
    45 degree
    46 delay
    47 development
    48 distribution
    49 ear
    50 example
    51 excitatory postsynaptic potentials
    52 fire
    53 firing
    54 group
    55 half-maximum height
    56 height
    57 importance
    58 independent groups
    59 information processing
    60 input
    61 integrate
    62 involved9
    63 laminar nucleus
    64 learning rule
    65 magnitude
    66 microseconds
    67 modelling study
    68 necessary degree
    69 neural information processing
    70 neuronal firing
    71 neuronal learning rules
    72 neuronal processes involved9
    73 neurons
    74 nucleus
    75 observations
    76 ontogenetic development
    77 order
    78 orders of magnitude
    79 owls
    80 paradox
    81 postsynaptic potentials
    82 potential
    83 presynaptic signals
    84 problem
    85 processes involved9
    86 processing
    87 questions
    88 random delays
    89 range
    90 relevant signals
    91 right ear
    92 rules
    93 select connections
    94 signal arrival time
    95 signals
    96 simulations
    97 study
    98 sub-millisecond temporal coding
    99 system
    100 temporal coding
    101 time
    102 time constants
    103 unsupervised Hebbian learning rule
    104 virtue
    105 width
    106 yet3
    107 μs
    108 schema:name A neuronal learning rule for sub-millisecond temporal coding
    109 schema:pagination 76-78
    110 schema:productId N2c081ca2026b4c49b8e6e9ed314a2ac7
    111 N5231c4c8ef5446698ab961fd473a4967
    112 N8dfd73e3eb244e96b046cd0b70d5fb8c
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
    114 https://doi.org/10.1038/383076a0
    115 schema:sdDatePublished 2021-12-01T19:10
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N1d21333a095e4880a8a2f9d4db61309a
    118 schema:url https://doi.org/10.1038/383076a0
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N1d21333a095e4880a8a2f9d4db61309a schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N211ed3ae69e14f2b88df2ece2cd243cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Computer Simulation
    126 rdf:type schema:DefinedTerm
    127 N27a5d939731349ee86025d020dfcf40a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Neurons, Afferent
    129 rdf:type schema:DefinedTerm
    130 N2c081ca2026b4c49b8e6e9ed314a2ac7 schema:name pubmed_id
    131 schema:value 8779718
    132 rdf:type schema:PropertyValue
    133 N2d12e1f9524e426d97b8fc560a7ede6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Hearing
    135 rdf:type schema:DefinedTerm
    136 N2d4aa683f3d54112a5449a22dfa74c0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Membrane Potentials
    138 rdf:type schema:DefinedTerm
    139 N3bc21252b12b444ab999ac82053c363b rdf:first sg:person.01216526014.94
    140 rdf:rest N4144939491c84ad79dd48d44d007ed9c
    141 N4144939491c84ad79dd48d44d007ed9c rdf:first sg:person.0674060607.47
    142 rdf:rest Nef13e7439f60464797c28cf0c3170d31
    143 N4cefa419b73d45028e6bee8f8288d9c8 rdf:first sg:person.016112362512.63
    144 rdf:rest rdf:nil
    145 N5231c4c8ef5446698ab961fd473a4967 schema:name doi
    146 schema:value 10.1038/383076a0
    147 rdf:type schema:PropertyValue
    148 N5486229df64a437ba91e77fa64d65984 schema:volumeNumber 383
    149 rdf:type schema:PublicationVolume
    150 N5aa84c5de20747d19d3b605d4b568d20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Reaction Time
    152 rdf:type schema:DefinedTerm
    153 N8b8073d484114a53b5ff10cda9eda40a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Birds
    155 rdf:type schema:DefinedTerm
    156 N8dfd73e3eb244e96b046cd0b70d5fb8c schema:name dimensions_id
    157 schema:value pub.1013183215
    158 rdf:type schema:PropertyValue
    159 Na57efd7810dd402287d6748e1e42b507 schema:issueNumber 6595
    160 rdf:type schema:PublicationIssue
    161 Nadd51bf8e9cf474baa0d431a77751ce1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Auditory Pathways
    163 rdf:type schema:DefinedTerm
    164 Nc81a4c250c42488886227b9c2a3824f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Animals
    166 rdf:type schema:DefinedTerm
    167 Nc8e92a35c7314c1283f04e850f6fb9ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Synapses
    169 rdf:type schema:DefinedTerm
    170 Nd6a743af25774107b9c68a13ca16e487 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Auditory Perception
    172 rdf:type schema:DefinedTerm
    173 Nef13e7439f60464797c28cf0c3170d31 rdf:first sg:person.01066247102.81
    174 rdf:rest N4cefa419b73d45028e6bee8f8288d9c8
    175 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Medical and Health Sciences
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Neurosciences
    180 rdf:type schema:DefinedTerm
    181 sg:journal.1018957 schema:issn 0028-0836
    182 1476-4687
    183 schema:name Nature
    184 schema:publisher Springer Nature
    185 rdf:type schema:Periodical
    186 sg:person.01066247102.81 schema:affiliation grid-institutes:grid.6936.a
    187 schema:familyName van Hemmen
    188 schema:givenName J. Leo
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81
    190 rdf:type schema:Person
    191 sg:person.01216526014.94 schema:affiliation grid-institutes:None
    192 schema:familyName Gerstner
    193 schema:givenName Wulfram
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216526014.94
    195 rdf:type schema:Person
    196 sg:person.016112362512.63 schema:affiliation grid-institutes:grid.1957.a
    197 schema:familyName Wagner
    198 schema:givenName Hermann
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016112362512.63
    200 rdf:type schema:Person
    201 sg:person.0674060607.47 schema:affiliation grid-institutes:grid.6936.a
    202 schema:familyName Kempter
    203 schema:givenName Richard
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674060607.47
    205 rdf:type schema:Person
    206 sg:pub.10.1007/978-1-4612-4320-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044303677
    207 https://doi.org/10.1007/978-1-4612-4320-5_3
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf00204701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049161196
    210 https://doi.org/10.1007/bf00204701
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf00612561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029330619
    213 https://doi.org/10.1007/bf00612561
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf00663105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033821927
    216 https://doi.org/10.1007/bf00663105
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf00962720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041421686
    219 https://doi.org/10.1007/bf00962720
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/361031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042608618
    222 https://doi.org/10.1038/361031a0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/376033a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030832995
    225 https://doi.org/10.1038/376033a0
    226 rdf:type schema:CreativeWork
    227 grid-institutes:None schema:alternateName Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland
    228 schema:name Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland
    229 Physik-Department, Technische Universität; München, D-85747, Garching bei München, Germany
    230 rdf:type schema:Organization
    231 grid-institutes:grid.1957.a schema:alternateName RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany
    232 schema:name Fakultat für Chemie und Biologie, Technische Universität; München, D-85747, Garching bei München, Germany
    233 RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany
    234 rdf:type schema:Organization
    235 grid-institutes:grid.6936.a schema:alternateName Physik-Department, Technische Universität; München, D-85747, Garching bei München, Germany
    236 schema:name Physik-Department, Technische Universität; München, D-85747, Garching bei München, Germany
    237 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...