A neuronal learning rule for sub-millisecond temporal coding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-09

AUTHORS

Wulfram Gerstner, Richard Kempter, J. Leo van Hemmen, Hermann Wagner

ABSTRACT

A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3–8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear. More... »

PAGES

76-78

Journal

TITLE

Nature

ISSUE

6595

VOLUME

383

Related Patents

  • Apparatus And Methods For Pulse-Code Invariant Object Recognition
  • Apparatus And Methods For Distance Estimation Using Multiple Image Sensors
  • Temporal Winner Takes All Spiking Neuron Network Sensory Processing Apparatus And Methods
  • Apparatus And Methods For Detection Of Objects Using Broadband Signals
  • Sensory Input Processing Apparatus And Methods
  • Apparatus And Methods For Computerized Object Identification
  • Adaptive Plasticity Apparatus And Methods For Spiking Neuron Network
  • Spiking Neuron Network Apparatus And Methods For Encoding Of Sensory Data
  • Apparatus And Methods For Encoding Of Sensory Data Using Artificial Spiking Neurons
  • Modulated Plasticity Apparatus And Methods For Spiking Neuron Network
  • Spiking Neuron Network Apparatus And Methods
  • Optical Detection Apparatus And Methods
  • Apparatus And Methods For Tracking Salient Features
  • Apparatus And Methods For Robotic Operation Using Video Imagery
  • Apparatus And Methods For Efficacy Balancing In A Spiking Neuron Network
  • Apparatus And Methods For Temporal Proximity Detection
  • Encoding And Decoding Information
  • Encoding And Decoding Information
  • Apparatus And Methods For Computerized Object Identification
  • Retinal Apparatus And Methods
  • Spiking Neural Network Feedback Apparatus And Methods
  • Apparatus And Methods For Encoding Vector Into Pulse-Code Output
  • Methods And Apparatus For Tracking Objects Using Saliency
  • Sensory Processing Apparatus And Methods
  • Conditional Plasticity Spiking Neuron Network Apparatus And Methods
  • Salient Features Tracking Apparatus And Methods Using Visual Initialization
  • Apparatus And Methods For Polychronous Encoding And Multiplexing In Neuronal Prosthetic Devices
  • Increased Dynamic Range Artificial Neuron Network Apparatus And Methods
  • Apparatus And Methods For Distance Estimation Using Stereo Imagery
  • Apparatus And Methods For Temporally Proximate Object Recognition
  • Apparatus And Methods For Saliency Detection Based On Color Occurrence Analysis
  • Contrast Enhancement Spiking Neuron Network Sensory Processing Apparatus And Methods
  • Sensory Input Processing Apparatus In A Spiking Neural Network
  • Spiking Neuron Sensory Processing Apparatus And Methods For Saliency Detection
  • Rate Stabilization Through Plasticity In Spiking Neuron Network
  • Invariant Pulse Latency Coding Systems And Methods
  • Apparatus And Methods For Backward Propagation Of Errors In A Spiking Neuron Network
  • Apparatus And Methods For Real Time Estimation Of Differential Motion In Live Video
  • Apparatus And Methods For Processing Inputs In An Artificial Neuron Network
  • Encoding And Decoding Information
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/383076a0

    DOI

    http://dx.doi.org/10.1038/383076a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013183215

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8779718


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Auditory Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Auditory Perception", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Birds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hearing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons, Afferent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reaction Time", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
                "Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerstner", 
            "givenName": "Wulfram", 
            "id": "sg:person.01216526014.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216526014.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kempter", 
            "givenName": "Richard", 
            "id": "sg:person.0674060607.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674060607.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Physik-Department, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Hemmen", 
            "givenName": "J. Leo", 
            "id": "sg:person.01066247102.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Fakultat f\u00fcr Chemie und Biologie, Technische Universit\u00e4t; M\u00fcnchen, D-85747, Garching bei M\u00fcnchen, Germany", 
                "RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagner", 
            "givenName": "Hermann", 
            "id": "sg:person.016112362512.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016112362512.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00962720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041421686", 
              "https://doi.org/10.1007/bf00962720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4320-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044303677", 
              "https://doi.org/10.1007/978-1-4612-4320-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00612561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029330619", 
              "https://doi.org/10.1007/bf00612561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00663105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033821927", 
              "https://doi.org/10.1007/bf00663105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361031a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042608618", 
              "https://doi.org/10.1038/361031a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376033a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030832995", 
              "https://doi.org/10.1038/376033a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00204701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049161196", 
              "https://doi.org/10.1007/bf00204701"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-09", 
        "datePublishedReg": "1996-09-01", 
        "description": "A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3\u20138. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 \u03bcs, has an accuracy of 25 \u03bcs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/383076a0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6595", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "383"
          }
        ], 
        "keywords": [
          "learning rule", 
          "unsupervised Hebbian learning rule", 
          "signal arrival times", 
          "random delays", 
          "Hebbian learning rule", 
          "temporal coding", 
          "neural information processing", 
          "computer simulations", 
          "coding", 
          "arrival time", 
          "information processing", 
          "rules", 
          "orders of magnitude", 
          "necessary degree", 
          "half-maximum height", 
          "delay", 
          "owls", 
          "select connections", 
          "broad distribution", 
          "time constants", 
          "processing", 
          "simulations", 
          "accuracy", 
          "problem", 
          "example", 
          "integrate", 
          "relevant signals", 
          "signals", 
          "input", 
          "system", 
          "modelling study", 
          "coherence", 
          "distribution", 
          "correct delay", 
          "constants", 
          "width", 
          "auditory system", 
          "connection", 
          "order", 
          "magnitude", 
          "\u03bcs", 
          "microseconds", 
          "independent groups", 
          "observations", 
          "time", 
          "\u03bcs", 
          "range", 
          "central question", 
          "development", 
          "virtue", 
          "paradox", 
          "degree", 
          "fire", 
          "height", 
          "nucleus", 
          "questions", 
          "potential", 
          "importance", 
          "neurons", 
          "study", 
          "firing", 
          "neuronal firing", 
          "group", 
          "barn owl", 
          "ear", 
          "right ear", 
          "postsynaptic potentials", 
          "ontogenetic development", 
          "axons", 
          "excitatory postsynaptic potentials", 
          "laminar nucleus", 
          "presynaptic signals", 
          "clear yet3\u20138", 
          "yet3\u20138", 
          "neuronal processes involved9", 
          "processes involved9", 
          "involved9", 
          "neuronal learning rule", 
          "sub-millisecond temporal coding"
        ], 
        "name": "A neuronal learning rule for sub-millisecond temporal coding", 
        "pagination": "76-78", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013183215"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/383076a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8779718"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/383076a0", 
          "https://app.dimensions.ai/details/publication/pub.1013183215"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_289.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/383076a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/383076a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/383076a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/383076a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/383076a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    237 TRIPLES      22 PREDICATES      122 URIs      107 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/383076a0 schema:about N0d77467f03794c4ba48347ef10636c52
    2 N19d6065f65f74b50914fc2ff2966bff4
    3 N310b711d3aed4d6f96d8071daeb51ff2
    4 N454250cf4afc4d9f89b2ff1253b34379
    5 N48d0e2f72f194cde8397d6ade22c81da
    6 N5dac06f11a3a482791d0c029fd882ac9
    7 Ncbf4fdd47f054f5a9f759c8fea1329fc
    8 Nddf593bb261b4439a49a02090b66cf16
    9 Ndeb994ad84304a6a8ec5ab09f010fc03
    10 Nfe290aa7783645cf9bb4738d8fc2d89f
    11 anzsrc-for:11
    12 anzsrc-for:1109
    13 schema:author Nfc7ab8f5d94a4686acc0382f99a79d32
    14 schema:citation sg:pub.10.1007/978-1-4612-4320-5_3
    15 sg:pub.10.1007/bf00204701
    16 sg:pub.10.1007/bf00612561
    17 sg:pub.10.1007/bf00663105
    18 sg:pub.10.1007/bf00962720
    19 sg:pub.10.1038/361031a0
    20 sg:pub.10.1038/376033a0
    21 schema:datePublished 1996-09
    22 schema:datePublishedReg 1996-09-01
    23 schema:description A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3–8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N93b5294488d84485aeaf5a83f305f21c
    28 N9c4f0430bdc04728af258cae51c3432f
    29 sg:journal.1018957
    30 schema:keywords Hebbian learning rule
    31 accuracy
    32 arrival time
    33 auditory system
    34 axons
    35 barn owl
    36 broad distribution
    37 central question
    38 clear yet3–8
    39 coding
    40 coherence
    41 computer simulations
    42 connection
    43 constants
    44 correct delay
    45 degree
    46 delay
    47 development
    48 distribution
    49 ear
    50 example
    51 excitatory postsynaptic potentials
    52 fire
    53 firing
    54 group
    55 half-maximum height
    56 height
    57 importance
    58 independent groups
    59 information processing
    60 input
    61 integrate
    62 involved9
    63 laminar nucleus
    64 learning rule
    65 magnitude
    66 microseconds
    67 modelling study
    68 necessary degree
    69 neural information processing
    70 neuronal firing
    71 neuronal learning rule
    72 neuronal processes involved9
    73 neurons
    74 nucleus
    75 observations
    76 ontogenetic development
    77 order
    78 orders of magnitude
    79 owls
    80 paradox
    81 postsynaptic potentials
    82 potential
    83 presynaptic signals
    84 problem
    85 processes involved9
    86 processing
    87 questions
    88 random delays
    89 range
    90 relevant signals
    91 right ear
    92 rules
    93 select connections
    94 signal arrival times
    95 signals
    96 simulations
    97 study
    98 sub-millisecond temporal coding
    99 system
    100 temporal coding
    101 time
    102 time constants
    103 unsupervised Hebbian learning rule
    104 virtue
    105 width
    106 yet3–8
    107 μs
    108 schema:name A neuronal learning rule for sub-millisecond temporal coding
    109 schema:pagination 76-78
    110 schema:productId N2ac57bd3d2f3455a844bb43715c22850
    111 Na71c673ea4134fa6ad4d29a84567fcfa
    112 Nf300f5f70fd64d39b0159176cd4f3ca0
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183215
    114 https://doi.org/10.1038/383076a0
    115 schema:sdDatePublished 2022-01-01T18:08
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Nf81b48f5745b43d19cbce3319e167e13
    118 schema:url https://doi.org/10.1038/383076a0
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N0d77467f03794c4ba48347ef10636c52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Neurons, Afferent
    124 rdf:type schema:DefinedTerm
    125 N19d6065f65f74b50914fc2ff2966bff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Computer Simulation
    127 rdf:type schema:DefinedTerm
    128 N2ac57bd3d2f3455a844bb43715c22850 schema:name pubmed_id
    129 schema:value 8779718
    130 rdf:type schema:PropertyValue
    131 N310b711d3aed4d6f96d8071daeb51ff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Membrane Potentials
    133 rdf:type schema:DefinedTerm
    134 N353ae3efa040428fbae3730d39cb1289 rdf:first sg:person.0674060607.47
    135 rdf:rest N7a383268aaf54a41bcdcd08088eac722
    136 N454250cf4afc4d9f89b2ff1253b34379 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Auditory Perception
    138 rdf:type schema:DefinedTerm
    139 N48d0e2f72f194cde8397d6ade22c81da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Synapses
    141 rdf:type schema:DefinedTerm
    142 N5dac06f11a3a482791d0c029fd882ac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Hearing
    144 rdf:type schema:DefinedTerm
    145 N7a383268aaf54a41bcdcd08088eac722 rdf:first sg:person.01066247102.81
    146 rdf:rest Nfafa5968fa494aa48c1a449376303ccd
    147 N93b5294488d84485aeaf5a83f305f21c schema:issueNumber 6595
    148 rdf:type schema:PublicationIssue
    149 N9c4f0430bdc04728af258cae51c3432f schema:volumeNumber 383
    150 rdf:type schema:PublicationVolume
    151 Na71c673ea4134fa6ad4d29a84567fcfa schema:name dimensions_id
    152 schema:value pub.1013183215
    153 rdf:type schema:PropertyValue
    154 Ncbf4fdd47f054f5a9f759c8fea1329fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Birds
    156 rdf:type schema:DefinedTerm
    157 Nddf593bb261b4439a49a02090b66cf16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Reaction Time
    159 rdf:type schema:DefinedTerm
    160 Ndeb994ad84304a6a8ec5ab09f010fc03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Auditory Pathways
    162 rdf:type schema:DefinedTerm
    163 Nf300f5f70fd64d39b0159176cd4f3ca0 schema:name doi
    164 schema:value 10.1038/383076a0
    165 rdf:type schema:PropertyValue
    166 Nf81b48f5745b43d19cbce3319e167e13 schema:name Springer Nature - SN SciGraph project
    167 rdf:type schema:Organization
    168 Nfafa5968fa494aa48c1a449376303ccd rdf:first sg:person.016112362512.63
    169 rdf:rest rdf:nil
    170 Nfc7ab8f5d94a4686acc0382f99a79d32 rdf:first sg:person.01216526014.94
    171 rdf:rest N353ae3efa040428fbae3730d39cb1289
    172 Nfe290aa7783645cf9bb4738d8fc2d89f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Animals
    174 rdf:type schema:DefinedTerm
    175 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Medical and Health Sciences
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Neurosciences
    180 rdf:type schema:DefinedTerm
    181 sg:journal.1018957 schema:issn 0028-0836
    182 1476-4687
    183 schema:name Nature
    184 schema:publisher Springer Nature
    185 rdf:type schema:Periodical
    186 sg:person.01066247102.81 schema:affiliation grid-institutes:grid.6936.a
    187 schema:familyName van Hemmen
    188 schema:givenName J. Leo
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066247102.81
    190 rdf:type schema:Person
    191 sg:person.01216526014.94 schema:affiliation grid-institutes:None
    192 schema:familyName Gerstner
    193 schema:givenName Wulfram
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216526014.94
    195 rdf:type schema:Person
    196 sg:person.016112362512.63 schema:affiliation grid-institutes:grid.1957.a
    197 schema:familyName Wagner
    198 schema:givenName Hermann
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016112362512.63
    200 rdf:type schema:Person
    201 sg:person.0674060607.47 schema:affiliation grid-institutes:grid.6936.a
    202 schema:familyName Kempter
    203 schema:givenName Richard
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674060607.47
    205 rdf:type schema:Person
    206 sg:pub.10.1007/978-1-4612-4320-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044303677
    207 https://doi.org/10.1007/978-1-4612-4320-5_3
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf00204701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049161196
    210 https://doi.org/10.1007/bf00204701
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf00612561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029330619
    213 https://doi.org/10.1007/bf00612561
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf00663105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033821927
    216 https://doi.org/10.1007/bf00663105
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf00962720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041421686
    219 https://doi.org/10.1007/bf00962720
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/361031a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042608618
    222 https://doi.org/10.1038/361031a0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/376033a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030832995
    225 https://doi.org/10.1038/376033a0
    226 rdf:type schema:CreativeWork
    227 grid-institutes:None schema:alternateName Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland
    228 schema:name Ecole Polytechnique Federate de Lausanne, CH-1015, Lausanne, Switzerland
    229 Physik-Department, Technische Universität; München, D-85747, Garching bei München, Germany
    230 rdf:type schema:Organization
    231 grid-institutes:grid.1957.a schema:alternateName RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany
    232 schema:name Fakultat für Chemie und Biologie, Technische Universität; München, D-85747, Garching bei München, Germany
    233 RWTH Aachen, Institut fur Biologie II, Kopernikusstr. 16, D-52074, Aachen, Germany
    234 rdf:type schema:Organization
    235 grid-institutes:grid.6936.a schema:alternateName Physik-Department, Technische Universität; München, D-85747, Garching bei München, Germany
    236 schema:name Physik-Department, Technische Universität; München, D-85747, Garching bei München, Germany
    237 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...