Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-07

AUTHORS

V. M. H. Ruutu, V. B. Eltsov, A. J. Gill, T. W. B. Kibble, M. Krusius, Yu. G. Makhlin, B. Plaçais, G. E. Volovik, Wen Xu

ABSTRACT

TOPOLOGICAL defects formed during a rapid symmetry-breaking phase transition in the early Universe1,2 could be responsible for seeding large-scale structure, for the anisotropy of the microwave background radiation, and for the predominance of matter over antimatter3,4. The theory describing this cosmological phase transition is formally analogous to that describing the transition to the superfluid state in liquid 3He, so that in principle the process of cosmological defect formation can be modelled in the laboratory. Here we report the results of an experiment in which the 'primordial fireball' is mimicked using a neutron-induced nuclear reaction (n + 3He → p + 3He + 0.76 MeV) to heat small regions of superfluid 3He above the superfluid transition temperature. These bubbles of normal liquid cool extremely rapidly, and we find that their transition back to the superfluid state is accompanied by the formation of a random network of vortices (the superfluid analogue of cosmic strings). We monitor the evolution of this defect state by rotating the superfluid sample, allowing vortices to escape from the network and thus be probed individually. Our results provide clear confirmation of the idea that topological defects form at a rapid second-order phase transition, and give quantitative support to the Kibble–Zurek mechanism5,6 of cosmological defect formation. More... »

PAGES

334-336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/382334a0

DOI

http://dx.doi.org/10.1038/382334a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003825111


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ruutu", 
        "givenName": "V. M. H.", 
        "id": "sg:person.011111155144.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111155144.84"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Eltsov", 
        "givenName": "V. B.", 
        "id": "sg:person.0655414745.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655414745.87"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gill", 
        "givenName": "A. J.", 
        "id": "sg:person.014443707145.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443707145.79"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kibble", 
        "givenName": "T. W. B.", 
        "id": "sg:person.013546025631.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013546025631.62"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Krusius", 
        "givenName": "M.", 
        "id": "sg:person.0667522267.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667522267.94"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Makhlin", 
        "givenName": "Yu. G.", 
        "id": "sg:person.015411254173.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015411254173.50"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pla\u00e7ais", 
        "givenName": "B.", 
        "id": "sg:person.01371301611.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371301611.47"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Volovik", 
        "givenName": "G. E.", 
        "id": "sg:person.010762140434.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762140434.15"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Wen", 
        "id": "sg:person.016367516375.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367516375.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/317505a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010182171", 
          "https://doi.org/10.1038/317505a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/58/5/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019547289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368315a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026887629", 
          "https://doi.org/10.1038/368315a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/9/8/029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045952638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.67.491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.67.491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.251.4999.1336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.263.5149.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062547702"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-07", 
    "datePublishedReg": "1996-07-01", 
    "description": "TOPOLOGICAL defects formed during a rapid symmetry-breaking phase transition in the early Universe1,2 could be responsible for seeding large-scale structure, for the anisotropy of the microwave background radiation, and for the predominance of matter over antimatter3,4. The theory describing this cosmological phase transition is formally analogous to that describing the transition to the superfluid state in liquid 3He, so that in principle the process of cosmological defect formation can be modelled in the laboratory. Here we report the results of an experiment in which the 'primordial fireball' is mimicked using a neutron-induced nuclear reaction (n + 3He \u2192 p + 3He + 0.76 MeV) to heat small regions of superfluid 3He above the superfluid transition temperature. These bubbles of normal liquid cool extremely rapidly, and we find that their transition back to the superfluid state is accompanied by the formation of a random network of vortices (the superfluid analogue of cosmic strings). We monitor the evolution of this defect state by rotating the superfluid sample, allowing vortices to escape from the network and thus be probed individually. Our results provide clear confirmation of the idea that topological defects form at a rapid second-order phase transition, and give quantitative support to the Kibble\u2013Zurek mechanism5,6 of cosmological defect formation.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/382334a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6589", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "382"
      }
    ], 
    "name": "Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation", 
    "pagination": "334-336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "12396c7d51075589ef915afafa873c8480380407efbce09f90adf4a1e6fc72be"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/382334a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003825111"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/382334a0", 
      "https://app.dimensions.ai/details/publication/pub.1003825111"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/382334a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/382334a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/382334a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/382334a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/382334a0'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/382334a0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N84c6d8ac5dff4beeb1157f73d578f30c
4 schema:citation sg:pub.10.1038/317505a0
5 sg:pub.10.1038/368315a0
6 https://doi.org/10.1088/0034-4885/58/5/001
7 https://doi.org/10.1088/0305-4470/9/8/029
8 https://doi.org/10.1103/revmodphys.67.491
9 https://doi.org/10.1126/science.251.4999.1336
10 https://doi.org/10.1126/science.263.5149.943
11 schema:datePublished 1996-07
12 schema:datePublishedReg 1996-07-01
13 schema:description TOPOLOGICAL defects formed during a rapid symmetry-breaking phase transition in the early Universe1,2 could be responsible for seeding large-scale structure, for the anisotropy of the microwave background radiation, and for the predominance of matter over antimatter3,4. The theory describing this cosmological phase transition is formally analogous to that describing the transition to the superfluid state in liquid 3He, so that in principle the process of cosmological defect formation can be modelled in the laboratory. Here we report the results of an experiment in which the 'primordial fireball' is mimicked using a neutron-induced nuclear reaction (n + 3He → p + 3He + 0.76 MeV) to heat small regions of superfluid 3He above the superfluid transition temperature. These bubbles of normal liquid cool extremely rapidly, and we find that their transition back to the superfluid state is accompanied by the formation of a random network of vortices (the superfluid analogue of cosmic strings). We monitor the evolution of this defect state by rotating the superfluid sample, allowing vortices to escape from the network and thus be probed individually. Our results provide clear confirmation of the idea that topological defects form at a rapid second-order phase transition, and give quantitative support to the Kibble–Zurek mechanism5,6 of cosmological defect formation.
14 schema:genre non_research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nb3e07014926a4fe688884144cade0aa3
18 Nbf730cfccdd048af91121ebb4558117f
19 sg:journal.1018957
20 schema:name Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation
21 schema:pagination 334-336
22 schema:productId N15e4c21ff03e47afb18540740f70de56
23 N259f3e2cd5b048d59b863a8cd8bb9cdc
24 Na860d9d46e294d568dd73fa591d5decd
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825111
26 https://doi.org/10.1038/382334a0
27 schema:sdDatePublished 2019-04-10T18:56
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N0edab508561f4c0e9b539bc60ebdab00
30 schema:url http://www.nature.com/articles/382334a0
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0edab508561f4c0e9b539bc60ebdab00 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N15e4c21ff03e47afb18540740f70de56 schema:name doi
37 schema:value 10.1038/382334a0
38 rdf:type schema:PropertyValue
39 N1bad87811a0c43bfa20190a3494611c0 rdf:first sg:person.013546025631.62
40 rdf:rest Nd75f3d72e565443490b7ad8239b2706e
41 N259f3e2cd5b048d59b863a8cd8bb9cdc schema:name dimensions_id
42 schema:value pub.1003825111
43 rdf:type schema:PropertyValue
44 N27ea302731de42b8939affc7c26afdf6 rdf:first sg:person.014443707145.79
45 rdf:rest N1bad87811a0c43bfa20190a3494611c0
46 N6fa4372a91da4f25b29b2fb683760c34 rdf:first sg:person.015411254173.50
47 rdf:rest N943165b4a2814780b28aa28041dc7752
48 N8276f870688b4dd089da4b8095d58ad4 rdf:first sg:person.010762140434.15
49 rdf:rest Ndac49095e7054ea882b9fc6a09505db4
50 N84c6d8ac5dff4beeb1157f73d578f30c rdf:first sg:person.011111155144.84
51 rdf:rest Nc693401eb62849a5847bbc2e8940db7b
52 N943165b4a2814780b28aa28041dc7752 rdf:first sg:person.01371301611.47
53 rdf:rest N8276f870688b4dd089da4b8095d58ad4
54 Na860d9d46e294d568dd73fa591d5decd schema:name readcube_id
55 schema:value 12396c7d51075589ef915afafa873c8480380407efbce09f90adf4a1e6fc72be
56 rdf:type schema:PropertyValue
57 Nb3e07014926a4fe688884144cade0aa3 schema:issueNumber 6589
58 rdf:type schema:PublicationIssue
59 Nbf730cfccdd048af91121ebb4558117f schema:volumeNumber 382
60 rdf:type schema:PublicationVolume
61 Nc693401eb62849a5847bbc2e8940db7b rdf:first sg:person.0655414745.87
62 rdf:rest N27ea302731de42b8939affc7c26afdf6
63 Nd75f3d72e565443490b7ad8239b2706e rdf:first sg:person.0667522267.94
64 rdf:rest N6fa4372a91da4f25b29b2fb683760c34
65 Ndac49095e7054ea882b9fc6a09505db4 rdf:first sg:person.016367516375.87
66 rdf:rest rdf:nil
67 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
71 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
72 rdf:type schema:DefinedTerm
73 sg:journal.1018957 schema:issn 0090-0028
74 1476-4687
75 schema:name Nature
76 rdf:type schema:Periodical
77 sg:person.010762140434.15 schema:familyName Volovik
78 schema:givenName G. E.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762140434.15
80 rdf:type schema:Person
81 sg:person.011111155144.84 schema:familyName Ruutu
82 schema:givenName V. M. H.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111155144.84
84 rdf:type schema:Person
85 sg:person.013546025631.62 schema:familyName Kibble
86 schema:givenName T. W. B.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013546025631.62
88 rdf:type schema:Person
89 sg:person.01371301611.47 schema:familyName Plaçais
90 schema:givenName B.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371301611.47
92 rdf:type schema:Person
93 sg:person.014443707145.79 schema:familyName Gill
94 schema:givenName A. J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443707145.79
96 rdf:type schema:Person
97 sg:person.015411254173.50 schema:familyName Makhlin
98 schema:givenName Yu. G.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015411254173.50
100 rdf:type schema:Person
101 sg:person.016367516375.87 schema:familyName Xu
102 schema:givenName Wen
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367516375.87
104 rdf:type schema:Person
105 sg:person.0655414745.87 schema:familyName Eltsov
106 schema:givenName V. B.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655414745.87
108 rdf:type schema:Person
109 sg:person.0667522267.94 schema:familyName Krusius
110 schema:givenName M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667522267.94
112 rdf:type schema:Person
113 sg:pub.10.1038/317505a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010182171
114 https://doi.org/10.1038/317505a0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/368315a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026887629
117 https://doi.org/10.1038/368315a0
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0034-4885/58/5/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547289
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0305-4470/9/8/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045952638
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/revmodphys.67.491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839346
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1126/science.251.4999.1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541643
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1126/science.263.5149.943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547702
128 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...