Turbulent cascades in foreign exchange markets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-06

AUTHORS

S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge

ABSTRACT

THE availability of high-frequency data for financial markets has made it possible to study market dynamics on timescales of less than a day1. For foreign exchange (FX) rates Müller et al.2 have shown that there is a net flow of information from long to short timescales: the behaviour of long-term traders (who watch the markets only from time to time) influences the behaviour of short-term traders (who watch the markets continuously). Motivated by this hierarchical feature, we have studied FX market dynamics in more detail, and report here an analogy between these dynamics and hydrodynamic turbulence3–8. Specifically, the relationship between the probability density of FX price changes (δx) and the time delay (δt) (Fig. la) is much the same as the relationship between the probability density of the velocity differences (δv) of two points in a turbulent flow and their spatial separation δr (Fig. 1b). Guided by this similarity we claim that there is an information cascade in FX market dynamics that corresponds to the energy cascade in hydrodynamic turbulence. On the basis of this analogy we can now rationalize the statistics of FX price differences at different time delays, which is important for, for example, option pricing. The analogy also provides a conceptual framework for understanding the short-term dynamics of speculative markets. More... »

PAGES

767-770

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6585

VOLUME

381

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/381767a0

DOI

http://dx.doi.org/10.1038/381767a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021721685


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ghashghaie", 
        "givenName": "S.", 
        "id": "sg:person.0742772477.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742772477.70"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Breymann", 
        "givenName": "W.", 
        "id": "sg:person.0622141367.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622141367.25"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Peinke", 
        "givenName": "J.", 
        "id": "sg:person.012627352233.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627352233.22"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Talkner", 
        "givenName": "P.", 
        "id": "sg:person.01222477634.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222477634.43"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Dodge", 
        "givenName": "Y.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-4076(92)90064-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000775842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/376046a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024788469", 
          "https://doi.org/10.1038/376046a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374408a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044566206", 
          "https://doi.org/10.1038/374408a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112084000513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112062000506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053965382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112062000518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054025600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp2:1994124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056975021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1913889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069641040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-06", 
    "datePublishedReg": "1996-06-01", 
    "description": "THE availability of high-frequency data for financial markets has made it possible to study market dynamics on timescales of less than a day1. For foreign exchange (FX) rates M\u00fcller et al.2 have shown that there is a net flow of information from long to short timescales: the behaviour of long-term traders (who watch the markets only from time to time) influences the behaviour of short-term traders (who watch the markets continuously). Motivated by this hierarchical feature, we have studied FX market dynamics in more detail, and report here an analogy between these dynamics and hydrodynamic turbulence3\u20138. Specifically, the relationship between the probability density of FX price changes (\u03b4x) and the time delay (\u03b4t) (Fig. la) is much the same as the relationship between the probability density of the velocity differences (\u03b4v) of two points in a turbulent flow and their spatial separation \u03b4r (Fig. 1b). Guided by this similarity we claim that there is an information cascade in FX market dynamics that corresponds to the energy cascade in hydrodynamic turbulence. On the basis of this analogy we can now rationalize the statistics of FX price differences at different time delays, which is important for, for example, option pricing. The analogy also provides a conceptual framework for understanding the short-term dynamics of speculative markets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/381767a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6585", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "381"
      }
    ], 
    "name": "Turbulent cascades in foreign exchange markets", 
    "pagination": "767-770", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "677da93db3ec938c2e3a0d560ffba9159bad96ac5cf4993d1dff1332eb1a924d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/381767a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021721685"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/381767a0", 
      "https://app.dimensions.ai/details/publication/pub.1021721685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/381767a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/381767a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/381767a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/381767a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/381767a0'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/381767a0 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N94d4a20f1ab84c7c8ea74c88b5f51b0b
4 schema:citation sg:pub.10.1038/374408a0
5 sg:pub.10.1038/376046a0
6 https://doi.org/10.1016/0304-4076(92)90064-x
7 https://doi.org/10.1017/s0022112062000506
8 https://doi.org/10.1017/s0022112062000518
9 https://doi.org/10.1017/s0022112084000513
10 https://doi.org/10.1051/jp2:1994124
11 https://doi.org/10.1103/physrevlett.73.3227
12 https://doi.org/10.2307/1912773
13 https://doi.org/10.2307/1913889
14 schema:datePublished 1996-06
15 schema:datePublishedReg 1996-06-01
16 schema:description THE availability of high-frequency data for financial markets has made it possible to study market dynamics on timescales of less than a day1. For foreign exchange (FX) rates Müller et al.2 have shown that there is a net flow of information from long to short timescales: the behaviour of long-term traders (who watch the markets only from time to time) influences the behaviour of short-term traders (who watch the markets continuously). Motivated by this hierarchical feature, we have studied FX market dynamics in more detail, and report here an analogy between these dynamics and hydrodynamic turbulence3–8. Specifically, the relationship between the probability density of FX price changes (δx) and the time delay (δt) (Fig. la) is much the same as the relationship between the probability density of the velocity differences (δv) of two points in a turbulent flow and their spatial separation δr (Fig. 1b). Guided by this similarity we claim that there is an information cascade in FX market dynamics that corresponds to the energy cascade in hydrodynamic turbulence. On the basis of this analogy we can now rationalize the statistics of FX price differences at different time delays, which is important for, for example, option pricing. The analogy also provides a conceptual framework for understanding the short-term dynamics of speculative markets.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N0ceeab75287749f49e3c69218bccfcb5
21 Nadfff41013ab459e8d5a00fd08d04c2e
22 sg:journal.1018957
23 schema:name Turbulent cascades in foreign exchange markets
24 schema:pagination 767-770
25 schema:productId N0341e103c49648458f352164fa51f07f
26 N537ca8483d934baea2f3356045efe7fa
27 N82a1757ba15d456a86bdc455af6b4478
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021721685
29 https://doi.org/10.1038/381767a0
30 schema:sdDatePublished 2019-04-10T12:58
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nff8a86368c4747db97a256dc9ac32528
33 schema:url http://www.nature.com/articles/381767a0
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0341e103c49648458f352164fa51f07f schema:name dimensions_id
38 schema:value pub.1021721685
39 rdf:type schema:PropertyValue
40 N091e9ac71cfd4f28b283e7840ab82705 rdf:first N70c6772228674f128cae8f79d515f31e
41 rdf:rest rdf:nil
42 N0ceeab75287749f49e3c69218bccfcb5 schema:issueNumber 6585
43 rdf:type schema:PublicationIssue
44 N109f2bfb8f9942f6a53e71f509b522a7 rdf:first sg:person.01222477634.43
45 rdf:rest N091e9ac71cfd4f28b283e7840ab82705
46 N537ca8483d934baea2f3356045efe7fa schema:name readcube_id
47 schema:value 677da93db3ec938c2e3a0d560ffba9159bad96ac5cf4993d1dff1332eb1a924d
48 rdf:type schema:PropertyValue
49 N70c6772228674f128cae8f79d515f31e schema:familyName Dodge
50 schema:givenName Y.
51 rdf:type schema:Person
52 N82a1757ba15d456a86bdc455af6b4478 schema:name doi
53 schema:value 10.1038/381767a0
54 rdf:type schema:PropertyValue
55 N94d4a20f1ab84c7c8ea74c88b5f51b0b rdf:first sg:person.0742772477.70
56 rdf:rest Nb13604b3828c415c8451dd839a7ec15a
57 Na0457e2098844856b72c218cea311fbe rdf:first sg:person.012627352233.22
58 rdf:rest N109f2bfb8f9942f6a53e71f509b522a7
59 Nadfff41013ab459e8d5a00fd08d04c2e schema:volumeNumber 381
60 rdf:type schema:PublicationVolume
61 Nb13604b3828c415c8451dd839a7ec15a rdf:first sg:person.0622141367.25
62 rdf:rest Na0457e2098844856b72c218cea311fbe
63 Nff8a86368c4747db97a256dc9ac32528 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
66 schema:name Economics
67 rdf:type schema:DefinedTerm
68 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
69 schema:name Applied Economics
70 rdf:type schema:DefinedTerm
71 sg:journal.1018957 schema:issn 0090-0028
72 1476-4687
73 schema:name Nature
74 rdf:type schema:Periodical
75 sg:person.01222477634.43 schema:familyName Talkner
76 schema:givenName P.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222477634.43
78 rdf:type schema:Person
79 sg:person.012627352233.22 schema:familyName Peinke
80 schema:givenName J.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627352233.22
82 rdf:type schema:Person
83 sg:person.0622141367.25 schema:familyName Breymann
84 schema:givenName W.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622141367.25
86 rdf:type schema:Person
87 sg:person.0742772477.70 schema:familyName Ghashghaie
88 schema:givenName S.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742772477.70
90 rdf:type schema:Person
91 sg:pub.10.1038/374408a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044566206
92 https://doi.org/10.1038/374408a0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/376046a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024788469
95 https://doi.org/10.1038/376046a0
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0304-4076(92)90064-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000775842
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/s0022112062000506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053965382
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1017/s0022112062000518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054025600
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0022112084000513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053847990
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1051/jp2:1994124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056975021
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.73.3227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810030
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2307/1912773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640314
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2307/1913889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069641040
112 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...