Trends in high-frequency climate variability in the twentieth century View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

Thomas R. Karl, Richard W. Knight, Neil Plummer

ABSTRACT

HIGH-FREQUENCY climate variability is a fundamental aspect of climate. Understanding climate change demands attention to changes in climate variability and extremes1, but knowledge of the recent behaviour of these variables has been limited by the unavailability of long-term high-resolution data. Climate simulations incorporating increased greenhouse-gas concentrations2-9 indicate that a warmer climate could result in a decrease in high-frequency temperature variability (analogous to the decrease in variability observed from the poles to the tropics, and from winter to summer10) and an increase in the proportion of precipitation occurring in extreme events. Here we analyse high-frequency temperature and precipitation data from hundreds of sites spread over Australia, China, the former Soviet Union and the United States over the past 30 to 80 years. Day-to-day temperature variability is seen to have decreased in the Northern Hemisphere, and-at least within the United States-the proportion of total precipitation contributed by extreme, one-day events has increased significantly. We find that although the notion of a recent increase in interannual temperature variability is supported by data from the past few decades11, the longer data records indicate that this trend is an aberration. More... »

PAGES

217-220

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/377217a0

DOI

http://dx.doi.org/10.1038/377217a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048375413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Karl", 
        "givenName": "Thomas R.", 
        "id": "sg:person.012775207423.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012775207423.92"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Knight", 
        "givenName": "Richard W.", 
        "id": "sg:person.013067277323.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013067277323.09"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Plummer", 
        "givenName": "Neil", 
        "id": "sg:person.015235324101.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235324101.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/94jd00548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002077776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1982)039<1446:seocew>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018574590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046834192", 
          "https://doi.org/10.1007/bf00139728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00139728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046834192", 
          "https://doi.org/10.1007/bf00139728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1973)012<0050:mrftcs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048611334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.237.4811.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062534410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.268.5207.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549985"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-09", 
    "datePublishedReg": "1995-09-01", 
    "description": "HIGH-FREQUENCY climate variability is a fundamental aspect of climate. Understanding climate change demands attention to changes in climate variability and extremes1, but knowledge of the recent behaviour of these variables has been limited by the unavailability of long-term high-resolution data. Climate simulations incorporating increased greenhouse-gas concentrations2-9 indicate that a warmer climate could result in a decrease in high-frequency temperature variability (analogous to the decrease in variability observed from the poles to the tropics, and from winter to summer10) and an increase in the proportion of precipitation occurring in extreme events. Here we analyse high-frequency temperature and precipitation data from hundreds of sites spread over Australia, China, the former Soviet Union and the United States over the past 30 to 80 years. Day-to-day temperature variability is seen to have decreased in the Northern Hemisphere, and-at least within the United States-the proportion of total precipitation contributed by extreme, one-day events has increased significantly. We find that although the notion of a recent increase in interannual temperature variability is supported by data from the past few decades11, the longer data records indicate that this trend is an aberration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/377217a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6546", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "377"
      }
    ], 
    "name": "Trends in high-frequency climate variability in the twentieth\n\t century", 
    "pagination": "217-220", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e673acb77fa3ab67809e2898198b1b767b479562a9964ad357fbb2ea72fe0cae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/377217a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048375413"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/377217a0", 
      "https://app.dimensions.ai/details/publication/pub.1048375413"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/377217a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/377217a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/377217a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/377217a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/377217a0'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/377217a0 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nd80a197a06054dacb1c294e4de18713c
4 schema:citation sg:pub.10.1007/bf00139728
5 https://doi.org/10.1029/94jd00548
6 https://doi.org/10.1126/science.237.4811.171
7 https://doi.org/10.1126/science.268.5207.59
8 https://doi.org/10.1175/1520-0450(1973)012<0050:mrftcs>2.0.co;2
9 https://doi.org/10.1175/1520-0469(1982)039<1446:seocew>2.0.co;2
10 schema:datePublished 1995-09
11 schema:datePublishedReg 1995-09-01
12 schema:description HIGH-FREQUENCY climate variability is a fundamental aspect of climate. Understanding climate change demands attention to changes in climate variability and extremes1, but knowledge of the recent behaviour of these variables has been limited by the unavailability of long-term high-resolution data. Climate simulations incorporating increased greenhouse-gas concentrations2-9 indicate that a warmer climate could result in a decrease in high-frequency temperature variability (analogous to the decrease in variability observed from the poles to the tropics, and from winter to summer10) and an increase in the proportion of precipitation occurring in extreme events. Here we analyse high-frequency temperature and precipitation data from hundreds of sites spread over Australia, China, the former Soviet Union and the United States over the past 30 to 80 years. Day-to-day temperature variability is seen to have decreased in the Northern Hemisphere, and-at least within the United States-the proportion of total precipitation contributed by extreme, one-day events has increased significantly. We find that although the notion of a recent increase in interannual temperature variability is supported by data from the past few decades11, the longer data records indicate that this trend is an aberration.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N0b36737bc72546c0bb1fc2a6b0acc932
17 N7a733fd40fd842e69cfe2f409d334522
18 sg:journal.1018957
19 schema:name Trends in high-frequency climate variability in the twentieth century
20 schema:pagination 217-220
21 schema:productId N2fc2817466d740219ca0b658de67715e
22 N7488989bec884fddb4318e1b473fca10
23 N9e4507ed5e624612ad7a20b469e649d1
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048375413
25 https://doi.org/10.1038/377217a0
26 schema:sdDatePublished 2019-04-10T16:29
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N90831d1f13f14a31847163104dbeba87
29 schema:url http://www.nature.com/articles/377217a0
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0b36737bc72546c0bb1fc2a6b0acc932 schema:volumeNumber 377
34 rdf:type schema:PublicationVolume
35 N2fc2817466d740219ca0b658de67715e schema:name doi
36 schema:value 10.1038/377217a0
37 rdf:type schema:PropertyValue
38 N4c762a1386cf45a9aaf11e4fcb9382b9 rdf:first sg:person.013067277323.09
39 rdf:rest Ndcee9725c0cc408fadca8bbcd105392e
40 N7488989bec884fddb4318e1b473fca10 schema:name readcube_id
41 schema:value e673acb77fa3ab67809e2898198b1b767b479562a9964ad357fbb2ea72fe0cae
42 rdf:type schema:PropertyValue
43 N7a733fd40fd842e69cfe2f409d334522 schema:issueNumber 6546
44 rdf:type schema:PublicationIssue
45 N90831d1f13f14a31847163104dbeba87 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N9e4507ed5e624612ad7a20b469e649d1 schema:name dimensions_id
48 schema:value pub.1048375413
49 rdf:type schema:PropertyValue
50 Nd80a197a06054dacb1c294e4de18713c rdf:first sg:person.012775207423.92
51 rdf:rest N4c762a1386cf45a9aaf11e4fcb9382b9
52 Ndcee9725c0cc408fadca8bbcd105392e rdf:first sg:person.015235324101.64
53 rdf:rest rdf:nil
54 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
55 schema:name Earth Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
58 schema:name Physical Geography and Environmental Geoscience
59 rdf:type schema:DefinedTerm
60 sg:journal.1018957 schema:issn 0090-0028
61 1476-4687
62 schema:name Nature
63 rdf:type schema:Periodical
64 sg:person.012775207423.92 schema:familyName Karl
65 schema:givenName Thomas R.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012775207423.92
67 rdf:type schema:Person
68 sg:person.013067277323.09 schema:familyName Knight
69 schema:givenName Richard W.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013067277323.09
71 rdf:type schema:Person
72 sg:person.015235324101.64 schema:familyName Plummer
73 schema:givenName Neil
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235324101.64
75 rdf:type schema:Person
76 sg:pub.10.1007/bf00139728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046834192
77 https://doi.org/10.1007/bf00139728
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1029/94jd00548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002077776
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1126/science.237.4811.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062534410
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1126/science.268.5207.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549985
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1175/1520-0450(1973)012<0050:mrftcs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048611334
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1175/1520-0469(1982)039<1446:seocew>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018574590
88 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...