Transition-state stabilization as a measure of the efficiency of antibody catalysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-06

AUTHORS

J D Stewart, S J Benkovic

ABSTRACT

There are now about 60 examples of reactions that have been successfully catalysed by monoclonal antibodies. Not surprisingly, many of the early examples involved reactions that were already favoured kinetically (such as carbonate and ester hydrolysis). But it has since been shown that antibodies can also accelerate reaction pathways that are normally disfavoured kinetically (by at least a few kcal mol-1). Here we use transition-state theory to provide a quantitative analysis of the scope and limitations of antibody catalysis. We show that the observed rate accelerations can be predicted from the ratio of equilibrium binding constants of the reaction substrate and the transition-state analogue used to raise the antibody. This scheme allows us to rationalize the product selectivity displayed in antibody catalysis of disfavoured reactions, to predict the degree of rate acceleration that catalytic antibodies may ultimately afford, and to highlight some differences between the way that they and enzymes catalyse reactions. More... »

PAGES

388-391

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/375388a0

DOI

http://dx.doi.org/10.1038/375388a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003379048

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7760931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Catalytic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Chemistry, University of Florida, Gainesville 32611, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stewart", 
        "givenName": "J D", 
        "type": "Person"
      }, 
      {
        "familyName": "Benkovic", 
        "givenName": "S J", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/338269a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007343144", 
          "https://doi.org/10.1038/338269a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338269a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007343144", 
          "https://doi.org/10.1038/338269a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/cs9932200213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019975813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0391-258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024420439", 
          "https://doi.org/10.1038/nbt0391-258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bb.05.060176.001415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032831635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4020(01)81784-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036628943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(94)90273-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042789241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-0004(94)90273-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042789241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar00032a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055148449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00104a027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055161045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00017a046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055699399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00035a057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055700955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00059a061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055703117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00071a067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055704262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00081a049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00084a075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00092a080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055706224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00169a044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055711107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00215a045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055714873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00241a042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055716956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1546293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1887215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062511612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2024118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062518803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2251500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062529248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.256.5055.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2717936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3129783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062592553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3616626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062620587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3787261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3787262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7809611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8023141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062651988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8191282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8211138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653652"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-06", 
    "datePublishedReg": "1995-06-01", 
    "description": "There are now about 60 examples of reactions that have been successfully catalysed by monoclonal antibodies. Not surprisingly, many of the early examples involved reactions that were already favoured kinetically (such as carbonate and ester hydrolysis). But it has since been shown that antibodies can also accelerate reaction pathways that are normally disfavoured kinetically (by at least a few kcal mol-1). Here we use transition-state theory to provide a quantitative analysis of the scope and limitations of antibody catalysis. We show that the observed rate accelerations can be predicted from the ratio of equilibrium binding constants of the reaction substrate and the transition-state analogue used to raise the antibody. This scheme allows us to rationalize the product selectivity displayed in antibody catalysis of disfavoured reactions, to predict the degree of rate acceleration that catalytic antibodies may ultimately afford, and to highlight some differences between the way that they and enzymes catalyse reactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/375388a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6530", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "375"
      }
    ], 
    "name": "Transition-state stabilization as a measure of the efficiency of antibody catalysis", 
    "pagination": "388-391", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10186e994122ea01ae03d3c0688565a7386ed48405ded48187846d454ad8f4c6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7760931"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/375388a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003379048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/375388a0", 
      "https://app.dimensions.ai/details/publication/pub.1003379048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/375388a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/375388a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/375388a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/375388a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/375388a0'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      65 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/375388a0 schema:about N3205874e39cc42d8a408eaf4b0aa4c58
2 Nc26c09b0bca846018edf4efea840ebc4
3 Ncaf160c6ba2a4d6e9f57c0863ba424a0
4 Nf56713bf55d0470784f1bcd00ab60258
5 anzsrc-for:03
6 anzsrc-for:0306
7 schema:author N19047fd1a1c74f5887060909571124cd
8 schema:citation sg:pub.10.1038/338269a0
9 sg:pub.10.1038/nbt0391-258
10 https://doi.org/10.1016/0968-0004(94)90273-9
11 https://doi.org/10.1016/s0040-4020(01)81784-1
12 https://doi.org/10.1021/ar00032a002
13 https://doi.org/10.1021/bi00104a027
14 https://doi.org/10.1021/ja00017a046
15 https://doi.org/10.1021/ja00035a057
16 https://doi.org/10.1021/ja00059a061
17 https://doi.org/10.1021/ja00071a067
18 https://doi.org/10.1021/ja00081a049
19 https://doi.org/10.1021/ja00084a075
20 https://doi.org/10.1021/ja00092a080
21 https://doi.org/10.1021/ja00169a044
22 https://doi.org/10.1021/ja00215a045
23 https://doi.org/10.1021/ja00241a042
24 https://doi.org/10.1039/cs9932200213
25 https://doi.org/10.1126/science.1546293
26 https://doi.org/10.1126/science.1887215
27 https://doi.org/10.1126/science.2024118
28 https://doi.org/10.1126/science.2251500
29 https://doi.org/10.1126/science.256.5055.365
30 https://doi.org/10.1126/science.2717936
31 https://doi.org/10.1126/science.3129783
32 https://doi.org/10.1126/science.3616626
33 https://doi.org/10.1126/science.3787261
34 https://doi.org/10.1126/science.3787262
35 https://doi.org/10.1126/science.7809611
36 https://doi.org/10.1126/science.8023141
37 https://doi.org/10.1126/science.8191282
38 https://doi.org/10.1126/science.8211138
39 https://doi.org/10.1146/annurev.bb.05.060176.001415
40 schema:datePublished 1995-06
41 schema:datePublishedReg 1995-06-01
42 schema:description There are now about 60 examples of reactions that have been successfully catalysed by monoclonal antibodies. Not surprisingly, many of the early examples involved reactions that were already favoured kinetically (such as carbonate and ester hydrolysis). But it has since been shown that antibodies can also accelerate reaction pathways that are normally disfavoured kinetically (by at least a few kcal mol-1). Here we use transition-state theory to provide a quantitative analysis of the scope and limitations of antibody catalysis. We show that the observed rate accelerations can be predicted from the ratio of equilibrium binding constants of the reaction substrate and the transition-state analogue used to raise the antibody. This scheme allows us to rationalize the product selectivity displayed in antibody catalysis of disfavoured reactions, to predict the degree of rate acceleration that catalytic antibodies may ultimately afford, and to highlight some differences between the way that they and enzymes catalyse reactions.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N79cbefd547bf4653a858c0e4fe196301
47 Nb1df7267b44c482da81f9f54f42689de
48 sg:journal.1018957
49 schema:name Transition-state stabilization as a measure of the efficiency of antibody catalysis
50 schema:pagination 388-391
51 schema:productId N262a4f03f7294e5dad45ea00fec6a066
52 N34a1ded095794f789127c8bddf25bd2c
53 N48125e9c3d534d059faf015e9c666e0d
54 N69d623701880467e8b2a2c3d3b5ba0c3
55 N6c78c455de264f808369371819f86e1f
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003379048
57 https://doi.org/10.1038/375388a0
58 schema:sdDatePublished 2019-04-11T01:46
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N209cafa9a6074a1bacced9d2c954df4b
61 schema:url http://www.nature.com/articles/375388a0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N19047fd1a1c74f5887060909571124cd rdf:first Nc84b1eff92be4e649707736a1310d585
66 rdf:rest Ne002c027e397490fbf4e164f4fea5b03
67 N209cafa9a6074a1bacced9d2c954df4b schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N262a4f03f7294e5dad45ea00fec6a066 schema:name dimensions_id
70 schema:value pub.1003379048
71 rdf:type schema:PropertyValue
72 N3205874e39cc42d8a408eaf4b0aa4c58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Thermodynamics
74 rdf:type schema:DefinedTerm
75 N34a1ded095794f789127c8bddf25bd2c schema:name pubmed_id
76 schema:value 7760931
77 rdf:type schema:PropertyValue
78 N48125e9c3d534d059faf015e9c666e0d schema:name readcube_id
79 schema:value 10186e994122ea01ae03d3c0688565a7386ed48405ded48187846d454ad8f4c6
80 rdf:type schema:PropertyValue
81 N69d623701880467e8b2a2c3d3b5ba0c3 schema:name doi
82 schema:value 10.1038/375388a0
83 rdf:type schema:PropertyValue
84 N6c78c455de264f808369371819f86e1f schema:name nlm_unique_id
85 schema:value 0410462
86 rdf:type schema:PropertyValue
87 N79cbefd547bf4653a858c0e4fe196301 schema:issueNumber 6530
88 rdf:type schema:PublicationIssue
89 Nacf90a3ff08d4040bd8d051e532d02f5 schema:familyName Benkovic
90 schema:givenName S J
91 rdf:type schema:Person
92 Nb1df7267b44c482da81f9f54f42689de schema:volumeNumber 375
93 rdf:type schema:PublicationVolume
94 Nc26c09b0bca846018edf4efea840ebc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Antibodies, Catalytic
96 rdf:type schema:DefinedTerm
97 Nc84b1eff92be4e649707736a1310d585 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
98 schema:familyName Stewart
99 schema:givenName J D
100 rdf:type schema:Person
101 Ncaf160c6ba2a4d6e9f57c0863ba424a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Catalysis
103 rdf:type schema:DefinedTerm
104 Ne002c027e397490fbf4e164f4fea5b03 rdf:first Nacf90a3ff08d4040bd8d051e532d02f5
105 rdf:rest rdf:nil
106 Nf56713bf55d0470784f1bcd00ab60258 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Models, Chemical
108 rdf:type schema:DefinedTerm
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 sg:journal.1018957 schema:issn 0090-0028
116 1476-4687
117 schema:name Nature
118 rdf:type schema:Periodical
119 sg:pub.10.1038/338269a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007343144
120 https://doi.org/10.1038/338269a0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nbt0391-258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024420439
123 https://doi.org/10.1038/nbt0391-258
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0968-0004(94)90273-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042789241
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0040-4020(01)81784-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036628943
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/ar00032a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055148449
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/bi00104a027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055161045
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/ja00017a046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055699399
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/ja00035a057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055700955
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/ja00059a061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055703117
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/ja00071a067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055704262
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/ja00081a049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705224
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/ja00084a075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705477
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/ja00092a080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055706224
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/ja00169a044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055711107
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/ja00215a045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055714873
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/ja00241a042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055716956
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1039/cs9932200213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019975813
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.1546293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490300
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1887215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062511612
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.2024118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062518803
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.2251500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062529248
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.256.5055.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543815
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.2717936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552603
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.3129783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062592553
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.3616626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062620587
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/science.3787261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621460
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.3787262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621461
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.7809611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649784
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.8023141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062651988
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.8191282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653070
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.8211138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653652
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1146/annurev.bb.05.060176.001415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032831635
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
186 schema:name Department of Chemistry, University of Florida, Gainesville 32611, USA.
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...