Large third-order optical nonlinearities in transition-metal oxides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-04

AUTHORS

Masanori Ando, Kohei Kadono, Masatake Haruta, Toru Sakaguchi, Masaru Miya

ABSTRACT

ADVANCES in the field of optical computing1–3 will require the development of materials that combine a large nonlinear optical response with a fast response time. For many applications, this translates into a third-order nonlinear optical susceptibility, χ(3), in excess of 10−8 e.s.u., and a response time faster than lO ps (ref. 4). Although a wide range of inorganic5–18 and organic19–21 materials have been found to exhibit a large χ(3), either the response times tend to be far too slow or the materials are not sufficiently stable for device applications. Recently, the transition-metal oxide Fe2O3 was found to have a large χ(3) (ref. 22). Here we show that oxides of several other 3d transition metals show a similarly large nonlinear optical response; moreover, we find that a significant contribution to the overall χ(3) (∼10−8 e.s.u. in the case of V2O5) has a response time of the order of 35 ps. More... »

PAGES

625-627

Journal

TITLE

Nature

ISSUE

6523

VOLUME

374

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/374625a0

DOI

http://dx.doi.org/10.1038/374625a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021088590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ando", 
        "givenName": "Masanori", 
        "id": "sg:person.01021773327.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021773327.22"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kadono", 
        "givenName": "Kohei", 
        "id": "sg:person.010333554003.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010333554003.39"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Haruta", 
        "givenName": "Masatake", 
        "id": "sg:person.01212655341.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212655341.51"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sakaguchi", 
        "givenName": "Toru", 
        "id": "sg:person.07557143605.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557143605.52"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Miya", 
        "givenName": "Masaru", 
        "id": "sg:person.016513571431.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513571431.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90263-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025066588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90263-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025066588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.103441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057651012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.104116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057651687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.109588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057657153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.356156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057974868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.357814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057978157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.93490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058133629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.96795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058136923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.98845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058138944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.98891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058138990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.47.197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.47.197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.253.5017.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062542371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.30.l742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063048095"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-04", 
    "datePublishedReg": "1995-04-01", 
    "description": "ADVANCES in the field of optical computing1\u20133 will require the development of materials that combine a large nonlinear optical response with a fast response time. For many applications, this translates into a third-order nonlinear optical susceptibility, \u03c7(3), in excess of 10\u22128 e.s.u., and a response time faster than lO ps (ref. 4). Although a wide range of inorganic5\u201318 and organic19\u201321 materials have been found to exhibit a large \u03c7(3), either the response times tend to be far too slow or the materials are not sufficiently stable for device applications. Recently, the transition-metal oxide Fe2O3 was found to have a large \u03c7(3) (ref. 22). Here we show that oxides of several other 3d transition metals show a similarly large nonlinear optical response; moreover, we find that a significant contribution to the overall \u03c7(3) (\u223c10\u22128 e.s.u. in the case of V2O5) has a response time of the order of 35 ps.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/374625a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6523", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "374"
      }
    ], 
    "name": "Large third-order optical nonlinearities in transition-metal\n\toxides", 
    "pagination": "625-627", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "647a035bd398d85f60ecc2a1ca22ee37b81bd79d4b32c1c4138e1f5097642ac3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/374625a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021088590"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/374625a0", 
      "https://app.dimensions.ai/details/publication/pub.1021088590"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/374625a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/374625a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/374625a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/374625a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/374625a0'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/374625a0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6446d8e388ce426f9b4c8dc5fd261109
4 schema:citation https://doi.org/10.1016/0022-3093(89)90263-9
5 https://doi.org/10.1016/0370-1573(82)90007-2
6 https://doi.org/10.1063/1.103441
7 https://doi.org/10.1063/1.104116
8 https://doi.org/10.1063/1.109588
9 https://doi.org/10.1063/1.356156
10 https://doi.org/10.1063/1.357814
11 https://doi.org/10.1063/1.93490
12 https://doi.org/10.1063/1.96795
13 https://doi.org/10.1063/1.98845
14 https://doi.org/10.1063/1.98891
15 https://doi.org/10.1103/physrevlett.36.956
16 https://doi.org/10.1103/physrevlett.47.197
17 https://doi.org/10.1126/science.253.5017.281
18 https://doi.org/10.1143/jjap.30.l742
19 schema:datePublished 1995-04
20 schema:datePublishedReg 1995-04-01
21 schema:description ADVANCES in the field of optical computing1–3 will require the development of materials that combine a large nonlinear optical response with a fast response time. For many applications, this translates into a third-order nonlinear optical susceptibility, χ(3), in excess of 10−8 e.s.u., and a response time faster than lO ps (ref. 4). Although a wide range of inorganic5–18 and organic19–21 materials have been found to exhibit a large χ(3), either the response times tend to be far too slow or the materials are not sufficiently stable for device applications. Recently, the transition-metal oxide Fe2O3 was found to have a large χ(3) (ref. 22). Here we show that oxides of several other 3d transition metals show a similarly large nonlinear optical response; moreover, we find that a significant contribution to the overall χ(3) (∼10−8 e.s.u. in the case of V2O5) has a response time of the order of 35 ps.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N49630be239944f33ada1e7792ea740d8
26 N81eac412f75a4e5abd2d75a0a5ec50b7
27 sg:journal.1018957
28 schema:name Large third-order optical nonlinearities in transition-metal oxides
29 schema:pagination 625-627
30 schema:productId N17c5433c0a154e039db64ef8d991b940
31 Nccafee1b0c1b42198fc66c22874a5f6e
32 Ne673fffc81da461a917a7dd806a06e79
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021088590
34 https://doi.org/10.1038/374625a0
35 schema:sdDatePublished 2019-04-10T18:56
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N080d0134f2414ae794179872d91fdd3b
38 schema:url http://www.nature.com/articles/374625a0
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N080d0134f2414ae794179872d91fdd3b schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N17c5433c0a154e039db64ef8d991b940 schema:name readcube_id
45 schema:value 647a035bd398d85f60ecc2a1ca22ee37b81bd79d4b32c1c4138e1f5097642ac3
46 rdf:type schema:PropertyValue
47 N49630be239944f33ada1e7792ea740d8 schema:issueNumber 6523
48 rdf:type schema:PublicationIssue
49 N6446d8e388ce426f9b4c8dc5fd261109 rdf:first sg:person.01021773327.22
50 rdf:rest Ncc3d14abb09b492d98df44e59f1b35eb
51 N81eac412f75a4e5abd2d75a0a5ec50b7 schema:volumeNumber 374
52 rdf:type schema:PublicationVolume
53 N8fe593c237754804a7651c2c128b2155 rdf:first sg:person.016513571431.82
54 rdf:rest rdf:nil
55 Nae6dcde216094ee0897f908e75ea7d09 rdf:first sg:person.01212655341.51
56 rdf:rest Nc7738da22d5b4bd7ba160d3dd14428a6
57 Nc7738da22d5b4bd7ba160d3dd14428a6 rdf:first sg:person.07557143605.52
58 rdf:rest N8fe593c237754804a7651c2c128b2155
59 Ncc3d14abb09b492d98df44e59f1b35eb rdf:first sg:person.010333554003.39
60 rdf:rest Nae6dcde216094ee0897f908e75ea7d09
61 Nccafee1b0c1b42198fc66c22874a5f6e schema:name dimensions_id
62 schema:value pub.1021088590
63 rdf:type schema:PropertyValue
64 Ne673fffc81da461a917a7dd806a06e79 schema:name doi
65 schema:value 10.1038/374625a0
66 rdf:type schema:PropertyValue
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
71 schema:name Materials Engineering
72 rdf:type schema:DefinedTerm
73 sg:journal.1018957 schema:issn 0090-0028
74 1476-4687
75 schema:name Nature
76 rdf:type schema:Periodical
77 sg:person.01021773327.22 schema:familyName Ando
78 schema:givenName Masanori
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021773327.22
80 rdf:type schema:Person
81 sg:person.010333554003.39 schema:familyName Kadono
82 schema:givenName Kohei
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010333554003.39
84 rdf:type schema:Person
85 sg:person.01212655341.51 schema:familyName Haruta
86 schema:givenName Masatake
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212655341.51
88 rdf:type schema:Person
89 sg:person.016513571431.82 schema:familyName Miya
90 schema:givenName Masaru
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513571431.82
92 rdf:type schema:Person
93 sg:person.07557143605.52 schema:familyName Sakaguchi
94 schema:givenName Toru
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557143605.52
96 rdf:type schema:Person
97 https://doi.org/10.1016/0022-3093(89)90263-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025066588
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0370-1573(82)90007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933280
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.103441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057651012
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.104116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057651687
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.109588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057657153
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.356156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057974868
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.357814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978157
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.93490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058133629
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.96795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058136923
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.98845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058138944
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.98891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058138990
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.36.956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060780491
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.47.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786682
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1126/science.253.5017.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062542371
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1143/jjap.30.l742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063048095
126 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...