Probable hole-doped superconductivity without apical oxygens in (Ca, Na)2CuO2CI2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-09

AUTHORS

M. Takano, N. Kobayashi, Z. Hiroi

ABSTRACT

THE presence of apical oxygens (above or below the CuO2 planes) has been regarded as indispensable for the occurrence of hole-doped superconductivity in the high-transition-temperature (high-Tc) copper oxide superconductors1,2. We have opposed this view3,4, on the basis of studies in compounds such as (Ca, Sr)1 - xCuO2 - y and Srn+1CUnO2n+1+δ; however, our conclusions have been ques-tioned in subsequent work5,6. Here we provide strong evidence for hole-doped superconductivity in the absence of apical oxygens, by showing that Ca2CuO2Cl2 can be rendered superconducting by doping with sodium. The compound contains CuO2 planes as in La2CuO4, but all of the oxygen atoms at the apices of the CuO6 octahedra found in La2CuO4 are replaced by chlorine, and the lanthanum atoms by calcium7. The apparent difference in mass and electronic character between chlorine and oxygen might strongly affect the electronic structure of the CuO2 planes if the contributions of the apical atoms were significant. But we find hole-doped superconductivity in (Ca, Na)2CuO2Cl2 at rather high transition temperatures (26 K at maximum), which are only slightly less than those of doped La2CuO4 (ref. 8). This implies that the apical atoms do not play a significant role in the electron pairing mechanism leading to high-Tc superconductivity. More... »

PAGES

139

Journal

TITLE

Nature

ISSUE

6493

VOLUME

371

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/371139a0

DOI

http://dx.doi.org/10.1038/371139a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037390709


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Takano", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kobayashi", 
        "givenName": "N.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hiroi", 
        "givenName": "Z.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/364315a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000349794", 
          "https://doi.org/10.1038/364315a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/364315a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000349794", 
          "https://doi.org/10.1038/364315a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/369382a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006003571", 
          "https://doi.org/10.1038/369382a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/356775a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011346879", 
          "https://doi.org/10.1038/356775a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567740869003220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024596087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370352a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038686806", 
          "https://doi.org/10.1038/370352a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-09", 
    "datePublishedReg": "1994-09-01", 
    "description": "THE presence of apical oxygens (above or below the CuO2 planes) has been regarded as indispensable for the occurrence of hole-doped superconductivity in the high-transition-temperature (high-Tc) copper oxide superconductors1,2. We have opposed this view3,4, on the basis of studies in compounds such as (Ca, Sr)1 - xCuO2 - y and Srn+1CUnO2n+1+\u03b4; however, our conclusions have been ques-tioned in subsequent work5,6. Here we provide strong evidence for hole-doped superconductivity in the absence of apical oxygens, by showing that Ca2CuO2Cl2 can be rendered superconducting by doping with sodium. The compound contains CuO2 planes as in La2CuO4, but all of the oxygen atoms at the apices of the CuO6 octahedra found in La2CuO4 are replaced by chlorine, and the lanthanum atoms by calcium7. The apparent difference in mass and electronic character between chlorine and oxygen might strongly affect the electronic structure of the CuO2 planes if the contributions of the apical atoms were significant. But we find hole-doped superconductivity in (Ca, Na)2CuO2Cl2 at rather high transition temperatures (26 K at maximum), which are only slightly less than those of doped La2CuO4 (ref. 8). This implies that the apical atoms do not play a significant role in the electron pairing mechanism leading to high-Tc superconductivity.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/371139a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6493", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "371"
      }
    ], 
    "name": "Probable hole-doped\nsuperconductivity\nwithout apical\noxygens in (Ca, Na)2CuO2CI2", 
    "pagination": "139", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b21cf5fe15fd01bb4f65dd81cec194feec6355d0ae2b78a02775e0cdc04b7881"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/371139a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037390709"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/371139a0", 
      "https://app.dimensions.ai/details/publication/pub.1037390709"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/371139a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/371139a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/371139a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/371139a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/371139a0'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/371139a0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N103a14cba0f841c1abed0fa9aa4528b0
4 schema:citation sg:pub.10.1038/356775a0
5 sg:pub.10.1038/364315a0
6 sg:pub.10.1038/369382a0
7 sg:pub.10.1038/370352a0
8 https://doi.org/10.1107/s0567740869003220
9 schema:datePublished 1994-09
10 schema:datePublishedReg 1994-09-01
11 schema:description THE presence of apical oxygens (above or below the CuO2 planes) has been regarded as indispensable for the occurrence of hole-doped superconductivity in the high-transition-temperature (high-Tc) copper oxide superconductors1,2. We have opposed this view3,4, on the basis of studies in compounds such as (Ca, Sr)1 - xCuO2 - y and Srn+1CUnO2n+1+δ; however, our conclusions have been ques-tioned in subsequent work5,6. Here we provide strong evidence for hole-doped superconductivity in the absence of apical oxygens, by showing that Ca2CuO2Cl2 can be rendered superconducting by doping with sodium. The compound contains CuO2 planes as in La2CuO4, but all of the oxygen atoms at the apices of the CuO6 octahedra found in La2CuO4 are replaced by chlorine, and the lanthanum atoms by calcium7. The apparent difference in mass and electronic character between chlorine and oxygen might strongly affect the electronic structure of the CuO2 planes if the contributions of the apical atoms were significant. But we find hole-doped superconductivity in (Ca, Na)2CuO2Cl2 at rather high transition temperatures (26 K at maximum), which are only slightly less than those of doped La2CuO4 (ref. 8). This implies that the apical atoms do not play a significant role in the electron pairing mechanism leading to high-Tc superconductivity.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N573f8ed629a749428df28a5df81f6770
16 Nab4b412ac9d447e9ab6eb230cb87359c
17 sg:journal.1018957
18 schema:name Probable hole-doped superconductivity without apical oxygens in (Ca, Na)2CuO2CI2
19 schema:pagination 139
20 schema:productId N3320eae183ae41d1a57b4857a9e763aa
21 N87ed7549bad54e06a967031b56632e3c
22 N95b3f0028daf4b3b888252e678d38263
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037390709
24 https://doi.org/10.1038/371139a0
25 schema:sdDatePublished 2019-04-10T23:12
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N1f9818e414a14e248d27a6fb759cef17
28 schema:url https://www.nature.com/articles/371139a0
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0ec647fc94fe40cb824babd018a1fb5c schema:familyName Hiroi
33 schema:givenName Z.
34 rdf:type schema:Person
35 N103a14cba0f841c1abed0fa9aa4528b0 rdf:first N79579c4f0fa047db9616afeb9309d7e0
36 rdf:rest Na3b02786a9d04f1b888ee88ba431f8a9
37 N1f9818e414a14e248d27a6fb759cef17 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N3320eae183ae41d1a57b4857a9e763aa schema:name readcube_id
40 schema:value b21cf5fe15fd01bb4f65dd81cec194feec6355d0ae2b78a02775e0cdc04b7881
41 rdf:type schema:PropertyValue
42 N573f8ed629a749428df28a5df81f6770 schema:issueNumber 6493
43 rdf:type schema:PublicationIssue
44 N79579c4f0fa047db9616afeb9309d7e0 schema:familyName Takano
45 schema:givenName M.
46 rdf:type schema:Person
47 N87ed7549bad54e06a967031b56632e3c schema:name doi
48 schema:value 10.1038/371139a0
49 rdf:type schema:PropertyValue
50 N95b3f0028daf4b3b888252e678d38263 schema:name dimensions_id
51 schema:value pub.1037390709
52 rdf:type schema:PropertyValue
53 N9b7912f1846d47df9f4a8537cf83c6e7 schema:familyName Kobayashi
54 schema:givenName N.
55 rdf:type schema:Person
56 Na3b02786a9d04f1b888ee88ba431f8a9 rdf:first N9b7912f1846d47df9f4a8537cf83c6e7
57 rdf:rest Nda4d1241e88943eaab1e442af40cde27
58 Nab4b412ac9d447e9ab6eb230cb87359c schema:volumeNumber 371
59 rdf:type schema:PublicationVolume
60 Nda4d1241e88943eaab1e442af40cde27 rdf:first N0ec647fc94fe40cb824babd018a1fb5c
61 rdf:rest rdf:nil
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
66 schema:name Materials Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1018957 schema:issn 0090-0028
69 1476-4687
70 schema:name Nature
71 rdf:type schema:Periodical
72 sg:pub.10.1038/356775a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011346879
73 https://doi.org/10.1038/356775a0
74 rdf:type schema:CreativeWork
75 sg:pub.10.1038/364315a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000349794
76 https://doi.org/10.1038/364315a0
77 rdf:type schema:CreativeWork
78 sg:pub.10.1038/369382a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006003571
79 https://doi.org/10.1038/369382a0
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/370352a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038686806
82 https://doi.org/10.1038/370352a0
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1107/s0567740869003220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024596087
85 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...