Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-08

AUTHORS

V. L. Colvin, M. C. Schlamp, A. P. Alivisatos

ABSTRACT

ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4–6, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8–10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19–24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour. More... »

PAGES

354-357

Journal

TITLE

Nature

ISSUE

6488

VOLUME

370

Related Patents

  • Inventory Control
  • Nanocomposites
  • Tellurium-Containing Nanocrystalline Materials
  • Ternary And Quarternary Nanocrystals, Processes For Their Production And Uses Thereof
  • Nanostructure And Nanocomposite Based Compositions And Photovoltaic Devices
  • Inventory Control
  • Water-Soluble Luminescent Quantum Dots And Biomolecular Conjugates Thereof And Related Compositions And Method Of Use
  • Optical Amplifiers And Lasers
  • Nanocrystal Structures
  • Quantum Dot White And Colored Light-Emitting Devices
  • Nanocrystals On Fibers
  • Composite Material Including Nanocrystals And Methods Of Making
  • System And Process For Producing Nanowire Composites And Electronic Substrates Therefrom
  • Nanocrystal Structures
  • Nanocomposites
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Broad-Emission Nanocrystals And Methods Of Making And Using Same
  • Optical Feedback Structures And Methods Of Making
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Luminescent Materials Having Nanocrystals Exhibiting Multi-Modal Energy Level Distributions
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Water Dispersible Polypyrroles Made With Polymeric Acid Colloids For Electronics Applications
  • Methods Of Processing Nanocrystals, And Compositions, Devices And Systems Including Same
  • Red-Emitting Organic Light Emitting Devices (Oled's)
  • Composite Material Including Nanocrystals And Methods Of Making
  • Electrically Conducting Organic Polymer/Nanoparticle Composites And Methods For Use Thereof
  • Nanocrystals In Devices
  • Quantum Dot Inorganic Electroluminescent Device
  • Quantum Dot White And Colored Light-Emitting Devices
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Uniform Transfer Of Luminescent Quantum Dots Onto A Substrate
  • High Work Function Transparent Conductors
  • Nanocrystal Structures
  • Electroluminescent Display Device Incorporating A Luminescent Device And Methods For Their Production
  • Core-Shell Nanocrystallite Comprising Tellurium-Containing Nanocrystalline Core And Semiconductor Shell
  • Water-Soluble Luminescent Quantum Dots And Biomolecular Conjugates Thereof And Related Compositions And Methods Of Use
  • Semiconductor Nanocrystal Composite
  • Quantum Dot White And Colored Light-Emitting Devices
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Nanocrystals Including Iii-V Semiconductors
  • Controlled Synthesis Of Nanoparticles Using Continuous Liquid-Flow Aerosol Method
  • Photoactive Compositions For Liquid Deposition
  • Electroluminescent Display Device Incorporating A Luminescent Device And Methods For Their Production
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Nanostructure And Nanocomposite Based Compositions And Photovoltaic Devices
  • Molecular Recognition Of Materials
  • Method And Structure Of Promoting Positive Efficiency Aging And Stabilization Of Quantum Dot Light-Emitting Diode
  • Light-Emitting Device Using A Three-Dimension Percolated Layer, And Manufacturing Process Thereof
  • Electronic And Opto-Electronic Devices Fabricated From Nanostructured High Surface To Volume Ratio Thin Films
  • Microspheres Including Nanoparticles
  • Microspheres Including Nanoparticles In The Peripheral Region
  • Highly Luminescent Color-Selective Nano-Crystalline Materials
  • Inventory Control
  • Electroluminescent Device Having A Structured Particle Electron Conductor
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Nanocrystals Including Iii-V Semiconductors
  • Quantum Dot For Emitting Light And Method For Synthesizing Same
  • Highly Luminescent Color-Selective Materials And Method Of Making Thereof
  • Electrically Conducting Organic Polymer/Nanoparticle Composites And Method For Use Thereof
  • Compositions Comprising Quantum Dots
  • Flow Method And Reactor For Manufacturing Noncrystals
  • System And Process For Producing Nanowire Composites And Electronic Substrates Therefrom
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Absorbing Film
  • Nanocrystal Taggants
  • Quantum Dots And Hosts
  • Nanostructure And Nanocomposite Based Compositions And Photovoltaic Devices
  • Devices Comprising Coated Semiconductor Nanocrystals Heterostructures
  • Semiconductor Particle Electroluminescent Display
  • Water-Soluble Fluorescent Nanocrystals
  • Near Infra-Red Composite Polymer-Nanocrystal Materials And Electro-Optical Devices Produced Therefrom
  • Controlled Chemical Aerosol Flow Synthesis Of Nanometer-Sized Particles And Other Nanometer-Sized Products
  • Method Of Preparing Nanocrystals
  • Red-Emitting Organic Light Emitting Devices (Oled's)
  • Nanocomposites
  • Optical Devices
  • Light Emitting Device Including Semiconductor Nanocrystals
  • Compositions Comprising Quantum Dots
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Buffer Compositions
  • High Work-Function And High Conductivity Compositions Of Electrically Conducting Polymers
  • Semiconductor Nanocrystal Heterostructures
  • Broad-Emission Nanocrystals And Methods Of Making And Using Same
  • Device And Method For Treatment Of Cells And Cell Tissue
  • Blue Light Emitting Semiconductor Nanocrystal Materials
  • Microspheres Including Nanoparticles
  • Light Emitting Device
  • Water Dispersible Polythiophenes Made With Polymeric Acid Colloids
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Blue Light Emitting Semiconductor Nanocrystal Materials
  • Blue Light Emitting Semiconductor Nanocrystal Materials
  • Creating Photon Atoms
  • Visible Light Emitting Diodes Fabricated From Soluble Semiconducting Polymers
  • Electrically Conducting Organic Polymer/Nanoparticle Composites And Methods For Use Thereof
  • Semiconductor Nanocrystal Heterostructures
  • Semiconductor Nanocrystal Heterostructures Having Specific Charge Carrier Confinement
  • Alloyed Semiconductor Nanocrystals
  • Highly Luminescent Color Selective Nanocrystalline Materials
  • Biological Applications Of Quantum Dots
  • Water-Soluble Fluorescent Semiconductor Nanocrystals
  • Visible Light Emitting Diodes Fabricated From Soluble Semiconducting Polymers
  • Semiconductor Nanocrystals For Inventory Control
  • Nanocomposites
  • System And Process For Producing Nanowire Composites And Electronic Substrates Therefrom
  • Quantum Dot White And Colored Light-Emitting Devices
  • Nanocrystal Taggants
  • Semiconductor Nanocrystal Probes For Biological Applications And Process For Making And Using Such Probes
  • Devices Comprising Coated Semiconductor Nanocrystal Heterostructures
  • Highly Luminescent Color-Selective Nanocrystalline Materials
  • Water-Soluble Fluorescent Nanocrystals
  • Electro-Optical Device
  • Methods For Forming Nanocrystals With Position-Controlled Dopants
  • 3d Printed Active Electronic Materials And Devices
  • Microspheres Including Nanoparticles
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/370354a0

    DOI

    http://dx.doi.org/10.1038/370354a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018369978


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Colvin", 
            "givenName": "V. L.", 
            "id": "sg:person.0600101310.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600101310.48"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Schlamp", 
            "givenName": "M. C.", 
            "id": "sg:person.015723171641.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723171641.38"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Alivisatos", 
            "givenName": "A. P.", 
            "id": "sg:person.01202577361.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202577361.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/365695a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018546005", 
              "https://doi.org/10.1038/365695a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356047a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026837677", 
              "https://doi.org/10.1038/356047a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/347539a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028275474", 
              "https://doi.org/10.1038/347539a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)91086-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029441198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)91086-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029441198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)91088-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029764553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)91088-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029764553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/365628a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038531286", 
              "https://doi.org/10.1038/365628a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)90579-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0379-6779(93)90579-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(92)87043-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044440163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100066a034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055651590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100281a004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055662507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100403a003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055669234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00039a038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055701296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00072a025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055704326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00218a008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055715081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.108094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057655663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1753710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057814155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3022205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057893627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.353794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057970289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.356350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057975378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.448727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058026747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.462114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058040125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.2786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.2786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060808333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060808333"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-08", 
        "datePublishedReg": "1994-08-01", 
        "description": "ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4\u20136, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8\u201310 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19\u201324 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/370354a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6488", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "370"
          }
        ], 
        "name": "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer", 
        "pagination": "354-357", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5786ceb6c289a7ef94179a1c22969c643f93a657f63473e30bfd06ecf64eb017"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/370354a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018369978"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/370354a0", 
          "https://app.dimensions.ai/details/publication/pub.1018369978"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/370354a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/370354a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/370354a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/370354a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/370354a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/370354a0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nb5dc8da2c89f4dddb6fd1b83d77de03b
    4 schema:citation sg:pub.10.1038/347539a0
    5 sg:pub.10.1038/356047a0
    6 sg:pub.10.1038/365628a0
    7 sg:pub.10.1038/365695a0
    8 https://doi.org/10.1016/0009-2614(92)87043-o
    9 https://doi.org/10.1016/0379-6779(93)90579-l
    10 https://doi.org/10.1016/0379-6779(93)91086-h
    11 https://doi.org/10.1016/0379-6779(93)91088-j
    12 https://doi.org/10.1021/j100066a034
    13 https://doi.org/10.1021/j100281a004
    14 https://doi.org/10.1021/j100403a003
    15 https://doi.org/10.1021/ja00039a038
    16 https://doi.org/10.1021/ja00072a025
    17 https://doi.org/10.1021/ja00218a008
    18 https://doi.org/10.1063/1.108094
    19 https://doi.org/10.1063/1.1753710
    20 https://doi.org/10.1063/1.3022205
    21 https://doi.org/10.1063/1.353794
    22 https://doi.org/10.1063/1.356350
    23 https://doi.org/10.1063/1.448727
    24 https://doi.org/10.1063/1.462114
    25 https://doi.org/10.1103/physrevlett.66.2786
    26 https://doi.org/10.1103/physrevlett.71.637
    27 schema:datePublished 1994-08
    28 schema:datePublishedReg 1994-08-01
    29 schema:description ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4–6, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8–10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19–24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N05bdd55e54794edf916af11332c4fd5f
    34 Nd800b6e378a44b7a9b400b0015b4e884
    35 sg:journal.1018957
    36 schema:name Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer
    37 schema:pagination 354-357
    38 schema:productId N0f6adbd38afe4818a832d718f71ada7a
    39 N61b87d8ee0694055a926152a81ac39bb
    40 Nf68bf06618674b3ba957e4149223de27
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018369978
    42 https://doi.org/10.1038/370354a0
    43 schema:sdDatePublished 2019-04-10T15:38
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nc9146f83948548c892ba28b405745f46
    46 schema:url http://www.nature.com/articles/370354a0
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N05bdd55e54794edf916af11332c4fd5f schema:volumeNumber 370
    51 rdf:type schema:PublicationVolume
    52 N0f6adbd38afe4818a832d718f71ada7a schema:name dimensions_id
    53 schema:value pub.1018369978
    54 rdf:type schema:PropertyValue
    55 N61b87d8ee0694055a926152a81ac39bb schema:name doi
    56 schema:value 10.1038/370354a0
    57 rdf:type schema:PropertyValue
    58 N96361477a50544399628ff1ad117a818 rdf:first sg:person.01202577361.01
    59 rdf:rest rdf:nil
    60 Nb5dc8da2c89f4dddb6fd1b83d77de03b rdf:first sg:person.0600101310.48
    61 rdf:rest Nee2471a2512c4004ad93b0aa082b708a
    62 Nc9146f83948548c892ba28b405745f46 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nd800b6e378a44b7a9b400b0015b4e884 schema:issueNumber 6488
    65 rdf:type schema:PublicationIssue
    66 Nee2471a2512c4004ad93b0aa082b708a rdf:first sg:person.015723171641.38
    67 rdf:rest N96361477a50544399628ff1ad117a818
    68 Nf68bf06618674b3ba957e4149223de27 schema:name readcube_id
    69 schema:value 5786ceb6c289a7ef94179a1c22969c643f93a657f63473e30bfd06ecf64eb017
    70 rdf:type schema:PropertyValue
    71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Engineering
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Materials Engineering
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1018957 schema:issn 0090-0028
    78 1476-4687
    79 schema:name Nature
    80 rdf:type schema:Periodical
    81 sg:person.01202577361.01 schema:familyName Alivisatos
    82 schema:givenName A. P.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202577361.01
    84 rdf:type schema:Person
    85 sg:person.015723171641.38 schema:familyName Schlamp
    86 schema:givenName M. C.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723171641.38
    88 rdf:type schema:Person
    89 sg:person.0600101310.48 schema:familyName Colvin
    90 schema:givenName V. L.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600101310.48
    92 rdf:type schema:Person
    93 sg:pub.10.1038/347539a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028275474
    94 https://doi.org/10.1038/347539a0
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1038/356047a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026837677
    97 https://doi.org/10.1038/356047a0
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1038/365628a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038531286
    100 https://doi.org/10.1038/365628a0
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1038/365695a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018546005
    103 https://doi.org/10.1038/365695a0
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0009-2614(92)87043-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1044440163
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0379-6779(93)90579-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746337
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0379-6779(93)91086-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1029441198
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0379-6779(93)91088-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1029764553
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1021/j100066a034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055651590
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1021/j100281a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055662507
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1021/j100403a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055669234
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1021/ja00039a038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701296
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1021/ja00072a025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055704326
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1021/ja00218a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055715081
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/1.108094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057655663
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1063/1.1753710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814155
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1063/1.3022205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057893627
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1063/1.353794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057970289
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1063/1.356350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057975378
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1063/1.448727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058026747
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.462114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058040125
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevlett.66.2786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802573
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.71.637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808333
    142 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...