Response of the climate system to atmospheric aerosols and greenhouse gases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-06

AUTHORS

K. E. Taylor, J. E. Penner

ABSTRACT

RECENTLY, Kiehl and Briegleb1 evaluated the radiative forcing associated with the capacity of atmospheric sulphate aerosols to reflect solar radiation back into space, and compared this with the forcing associated with atmospheric greenhouse gases. They found that the (negative) climate forcing by the aerosols has strong regional character, with the greatest forcing over Northern Hemisphere land surfaces, whereas the (positive) forcing by greenhouse gases is distributed almost equally between the hemispheres and varies mainly as a function of latitude. Here we present simulations of the response of the climate system to these two types of forcing. We find that the global response to aerosol forcing is regionally heterogeneous, with a distribution that is different from the forcing pattern. The simulations also imply that, for equal magnitudes of forcing, the temperature response is markedly greater for carbon dioxide than for aerosol forcing. We conclude that to predict the global mean climate response to global mean forcing, it is necessary to separate out the different components of the forcing to which the climate system is sensitive. More... »

PAGES

734-737

Journal

TITLE

Nature

ISSUE

6483

VOLUME

369

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/369734a0

DOI

http://dx.doi.org/10.1038/369734a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045908576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Taylor", 
        "givenName": "K. E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Penner", 
        "givenName": "J. E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/326655a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010037784", 
          "https://doi.org/10.1038/326655a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1993)006<0393:cdacti>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013072205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-0182(89)90193-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014472207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-0182(89)90193-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014472207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1992)005<0907:aaoclw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015102978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(82)90079-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025024060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(82)90079-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025024060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038295809", 
          "https://doi.org/10.1038/339365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038295809", 
          "https://doi.org/10.1038/339365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd093id08p09341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.245.4917.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.255.5043.423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-06", 
    "datePublishedReg": "1994-06-01", 
    "description": "RECENTLY, Kiehl and Briegleb1 evaluated the radiative forcing associated with the capacity of atmospheric sulphate aerosols to reflect solar radiation back into space, and compared this with the forcing associated with atmospheric greenhouse gases. They found that the (negative) climate forcing by the aerosols has strong regional character, with the greatest forcing over Northern Hemisphere land surfaces, whereas the (positive) forcing by greenhouse gases is distributed almost equally between the hemispheres and varies mainly as a function of latitude. Here we present simulations of the response of the climate system to these two types of forcing. We find that the global response to aerosol forcing is regionally heterogeneous, with a distribution that is different from the forcing pattern. The simulations also imply that, for equal magnitudes of forcing, the temperature response is markedly greater for carbon dioxide than for aerosol forcing. We conclude that to predict the global mean climate response to global mean forcing, it is necessary to separate out the different components of the forcing to which the climate system is sensitive.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/369734a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6483", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "369"
      }
    ], 
    "name": "Response of the climate system to atmospheric aerosols and greenhouse gases", 
    "pagination": "734-737", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "daaf02dc60633165ceacccf2ed2a3e125ab13839999ef55001d20f5412d709f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/369734a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045908576"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/369734a0", 
      "https://app.dimensions.ai/details/publication/pub.1045908576"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/369734a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/369734a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/369734a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/369734a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/369734a0'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/369734a0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N468756cf5f8d4ba78aa34fce7dd4e4a7
4 schema:citation sg:pub.10.1038/326655a0
5 sg:pub.10.1038/339365a0
6 https://doi.org/10.1016/0004-6981(82)90079-8
7 https://doi.org/10.1016/0031-0182(89)90193-4
8 https://doi.org/10.1029/jd093id08p09341
9 https://doi.org/10.1126/science.245.4917.513
10 https://doi.org/10.1126/science.255.5043.423
11 https://doi.org/10.1175/1520-0442(1992)005<0907:aaoclw>2.0.co;2
12 https://doi.org/10.1175/1520-0442(1993)006<0393:cdacti>2.0.co;2
13 schema:datePublished 1994-06
14 schema:datePublishedReg 1994-06-01
15 schema:description RECENTLY, Kiehl and Briegleb1 evaluated the radiative forcing associated with the capacity of atmospheric sulphate aerosols to reflect solar radiation back into space, and compared this with the forcing associated with atmospheric greenhouse gases. They found that the (negative) climate forcing by the aerosols has strong regional character, with the greatest forcing over Northern Hemisphere land surfaces, whereas the (positive) forcing by greenhouse gases is distributed almost equally between the hemispheres and varies mainly as a function of latitude. Here we present simulations of the response of the climate system to these two types of forcing. We find that the global response to aerosol forcing is regionally heterogeneous, with a distribution that is different from the forcing pattern. The simulations also imply that, for equal magnitudes of forcing, the temperature response is markedly greater for carbon dioxide than for aerosol forcing. We conclude that to predict the global mean climate response to global mean forcing, it is necessary to separate out the different components of the forcing to which the climate system is sensitive.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N52e6b25af5054e37ab026fc95c1e5726
20 Ndc5da149caef489d8d1b200f9683a094
21 sg:journal.1018957
22 schema:name Response of the climate system to atmospheric aerosols and greenhouse gases
23 schema:pagination 734-737
24 schema:productId N48d5d9b20008417f9b11b0f26c56f54f
25 N77a8906a05854c52af748a076cc2e17a
26 N96ce5c70a5bc4e6abaefc2f25f3a2271
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045908576
28 https://doi.org/10.1038/369734a0
29 schema:sdDatePublished 2019-04-10T13:56
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0819f727fafe46f99140893a81692f9f
32 schema:url http://www.nature.com/articles/369734a0
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0819f727fafe46f99140893a81692f9f schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N156a065b942c4c6992155943e20b9620 schema:familyName Penner
39 schema:givenName J. E.
40 rdf:type schema:Person
41 N468756cf5f8d4ba78aa34fce7dd4e4a7 rdf:first Nf595d5dcbae645b09c6e7da79575cd0d
42 rdf:rest Nb9f19fc27b514f3ba899bc0fc38c7122
43 N48d5d9b20008417f9b11b0f26c56f54f schema:name dimensions_id
44 schema:value pub.1045908576
45 rdf:type schema:PropertyValue
46 N52e6b25af5054e37ab026fc95c1e5726 schema:issueNumber 6483
47 rdf:type schema:PublicationIssue
48 N77a8906a05854c52af748a076cc2e17a schema:name doi
49 schema:value 10.1038/369734a0
50 rdf:type schema:PropertyValue
51 N96ce5c70a5bc4e6abaefc2f25f3a2271 schema:name readcube_id
52 schema:value daaf02dc60633165ceacccf2ed2a3e125ab13839999ef55001d20f5412d709f2
53 rdf:type schema:PropertyValue
54 Nb9f19fc27b514f3ba899bc0fc38c7122 rdf:first N156a065b942c4c6992155943e20b9620
55 rdf:rest rdf:nil
56 Ndc5da149caef489d8d1b200f9683a094 schema:volumeNumber 369
57 rdf:type schema:PublicationVolume
58 Nf595d5dcbae645b09c6e7da79575cd0d schema:familyName Taylor
59 schema:givenName K. E.
60 rdf:type schema:Person
61 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
62 schema:name Earth Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
65 schema:name Atmospheric Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1018957 schema:issn 0090-0028
68 1476-4687
69 schema:name Nature
70 rdf:type schema:Periodical
71 sg:pub.10.1038/326655a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010037784
72 https://doi.org/10.1038/326655a0
73 rdf:type schema:CreativeWork
74 sg:pub.10.1038/339365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038295809
75 https://doi.org/10.1038/339365a0
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/0004-6981(82)90079-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025024060
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0031-0182(89)90193-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014472207
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1029/jd093id08p09341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346451
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1126/science.245.4917.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538133
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1126/science.255.5043.423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543365
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1175/1520-0442(1992)005<0907:aaoclw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015102978
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1175/1520-0442(1993)006<0393:cdacti>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013072205
90 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...