Scattering and absorption of surface electron waves in quantum corrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-06

AUTHORS

E. J. Heller, M. F. Crommie, C. P. Lutz, D. M. Eigler

ABSTRACT

STANDING-WAVE patterns in electron density have been seen recently1–4 in images of the surfaces of noble metals obtained with the scanning tunnelling microscope (STM). These patterns are due to the scattering of surface electrons off impurities and step edges. By assembling specific enclosed structures of adatoms ('quantum corrals') using the STM, one can generate standing waves of particular geometries3. Here we describe a theory of the scattering process, which allows us to predict the standing-wave patterns of an arbitrary corral geometry with great accuracy. We can use the theory to examine the scattering properties of the atoms in the corral walls. We find that iron atoms assembled on the (111) surface of copper act as 'black dots', soaking up all of the electron wave amplitude impinging on them. A scattered wave is generated nonetheless, but this behaviour means that the corral walls are only 25% reflective. In an acoustic analogy, the corral is therefore a rather quiet chamber. More... »

PAGES

464-466

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/369464a0

DOI

http://dx.doi.org/10.1038/369464a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036792955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Harvard-Smithsonian Observatory, Harvard University, 17 Oxford Street, 02138, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics and Harvard-Smithsonian Observatory, Harvard University, 17 Oxford Street, 02138, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heller", 
        "givenName": "E. J.", 
        "id": "sg:person.01104200611.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104200611.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Boston University, 02215, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "IBM Research Division, Almaden Research Center, 650 Harry Road, 95120\u20136099, San Jose, California, USA", 
            "Department of Physics, Boston University, 02215, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crommie", 
        "givenName": "M. F.", 
        "id": "sg:person.01046572263.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research Division, Almaden Research Center, 650 Harry Road, 95120\u20136099, San Jose, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, 650 Harry Road, 95120\u20136099, San Jose, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lutz", 
        "givenName": "C. P.", 
        "id": "sg:person.01222067242.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222067242.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research Division, Almaden Research Center, 650 Harry Road, 95120\u20136099, San Jose, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research Division, Almaden Research Center, 650 Harry Road, 95120\u20136099, San Jose, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eigler", 
        "givenName": "D. M.", 
        "id": "sg:person.014130340176.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130340176.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/363524a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031919996", 
          "https://doi.org/10.1038/363524a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-06", 
    "datePublishedReg": "1994-06-01", 
    "description": "STANDING-WAVE patterns in electron density have been seen recently1\u20134 in images of the surfaces of noble metals obtained with the scanning tunnelling microscope (STM). These patterns are due to the scattering of surface electrons off impurities and step edges. By assembling specific enclosed structures of adatoms ('quantum corrals') using the STM, one can generate standing waves of particular geometries3. Here we describe a theory of the scattering process, which allows us to predict the standing-wave patterns of an arbitrary corral geometry with great accuracy. We can use the theory to examine the scattering properties of the atoms in the corral walls. We find that iron atoms assembled on the (111) surface of copper act as 'black dots', soaking up all of the electron wave amplitude impinging on them. A scattered wave is generated nonetheless, but this behaviour means that the corral walls are only 25% reflective. In an acoustic analogy, the corral is therefore a rather quiet chamber.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/369464a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6480", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "369"
      }
    ], 
    "keywords": [
      "scanning tunneling microscope", 
      "standing-wave pattern", 
      "corral wall", 
      "surface electron waves", 
      "quantum corrals", 
      "electron waves", 
      "surface electrons", 
      "tunneling microscope", 
      "scattering process", 
      "electron density", 
      "step edges", 
      "acoustic analogy", 
      "wave amplitude", 
      "scattering", 
      "iron atoms", 
      "waves", 
      "atoms", 
      "electrons", 
      "corrals", 
      "theory", 
      "noble metals", 
      "adatoms", 
      "greater accuracy", 
      "dots", 
      "absorption", 
      "quiet chamber", 
      "surface", 
      "microscope", 
      "impurities", 
      "geometry", 
      "density", 
      "amplitude", 
      "edge", 
      "analogy", 
      "properties", 
      "accuracy", 
      "chamber", 
      "structure", 
      "metals", 
      "images", 
      "copper acts", 
      "behavior", 
      "wall", 
      "process", 
      "black dots", 
      "patterns", 
      "acts"
    ], 
    "name": "Scattering and absorption of surface electron waves in quantum corrals", 
    "pagination": "464-466", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036792955"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/369464a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/369464a0", 
      "https://app.dimensions.ai/details/publication/pub.1036792955"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_249.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/369464a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/369464a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/369464a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/369464a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/369464a0'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      73 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/369464a0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8294ccdb02b947c88301fb58521151b1
4 schema:citation sg:pub.10.1038/363524a0
5 schema:datePublished 1994-06
6 schema:datePublishedReg 1994-06-01
7 schema:description STANDING-WAVE patterns in electron density have been seen recently1–4 in images of the surfaces of noble metals obtained with the scanning tunnelling microscope (STM). These patterns are due to the scattering of surface electrons off impurities and step edges. By assembling specific enclosed structures of adatoms ('quantum corrals') using the STM, one can generate standing waves of particular geometries3. Here we describe a theory of the scattering process, which allows us to predict the standing-wave patterns of an arbitrary corral geometry with great accuracy. We can use the theory to examine the scattering properties of the atoms in the corral walls. We find that iron atoms assembled on the (111) surface of copper act as 'black dots', soaking up all of the electron wave amplitude impinging on them. A scattered wave is generated nonetheless, but this behaviour means that the corral walls are only 25% reflective. In an acoustic analogy, the corral is therefore a rather quiet chamber.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N66c184c29b0a41b890f06d18bc3252fe
11 Na2b5614bf4d447c183885e6d08f55853
12 sg:journal.1018957
13 schema:keywords absorption
14 accuracy
15 acoustic analogy
16 acts
17 adatoms
18 amplitude
19 analogy
20 atoms
21 behavior
22 black dots
23 chamber
24 copper acts
25 corral wall
26 corrals
27 density
28 dots
29 edge
30 electron density
31 electron waves
32 electrons
33 geometry
34 greater accuracy
35 images
36 impurities
37 iron atoms
38 metals
39 microscope
40 noble metals
41 patterns
42 process
43 properties
44 quantum corrals
45 quiet chamber
46 scanning tunneling microscope
47 scattering
48 scattering process
49 standing-wave pattern
50 step edges
51 structure
52 surface
53 surface electron waves
54 surface electrons
55 theory
56 tunneling microscope
57 wall
58 wave amplitude
59 waves
60 schema:name Scattering and absorption of surface electron waves in quantum corrals
61 schema:pagination 464-466
62 schema:productId N189495ff65e545cfa2dbe4a3ce8abf8c
63 Naf62de0bedcd42dabada6d90f8a6d487
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036792955
65 https://doi.org/10.1038/369464a0
66 schema:sdDatePublished 2022-11-24T20:47
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nb262cd1052254be394a692758bacedb5
69 schema:url https://doi.org/10.1038/369464a0
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N160d75acf634445aa31c7f590c4270e8 rdf:first sg:person.01222067242.67
74 rdf:rest Nf444570d9e4f40d09f941172d0642716
75 N189495ff65e545cfa2dbe4a3ce8abf8c schema:name dimensions_id
76 schema:value pub.1036792955
77 rdf:type schema:PropertyValue
78 N66c184c29b0a41b890f06d18bc3252fe schema:issueNumber 6480
79 rdf:type schema:PublicationIssue
80 N6d6456eee377497a91108da7eeb75fe5 rdf:first sg:person.01046572263.84
81 rdf:rest N160d75acf634445aa31c7f590c4270e8
82 N8294ccdb02b947c88301fb58521151b1 rdf:first sg:person.01104200611.82
83 rdf:rest N6d6456eee377497a91108da7eeb75fe5
84 Na2b5614bf4d447c183885e6d08f55853 schema:volumeNumber 369
85 rdf:type schema:PublicationVolume
86 Naf62de0bedcd42dabada6d90f8a6d487 schema:name doi
87 schema:value 10.1038/369464a0
88 rdf:type schema:PropertyValue
89 Nb262cd1052254be394a692758bacedb5 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nf444570d9e4f40d09f941172d0642716 rdf:first sg:person.014130340176.54
92 rdf:rest rdf:nil
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
97 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
98 rdf:type schema:DefinedTerm
99 sg:journal.1018957 schema:issn 0028-0836
100 1476-4687
101 schema:name Nature
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.01046572263.84 schema:affiliation grid-institutes:grid.189504.1
105 schema:familyName Crommie
106 schema:givenName M. F.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84
108 rdf:type schema:Person
109 sg:person.01104200611.82 schema:affiliation grid-institutes:grid.38142.3c
110 schema:familyName Heller
111 schema:givenName E. J.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104200611.82
113 rdf:type schema:Person
114 sg:person.01222067242.67 schema:affiliation grid-institutes:grid.481551.c
115 schema:familyName Lutz
116 schema:givenName C. P.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222067242.67
118 rdf:type schema:Person
119 sg:person.014130340176.54 schema:affiliation grid-institutes:grid.481551.c
120 schema:familyName Eigler
121 schema:givenName D. M.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130340176.54
123 rdf:type schema:Person
124 sg:pub.10.1038/363524a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031919996
125 https://doi.org/10.1038/363524a0
126 rdf:type schema:CreativeWork
127 grid-institutes:grid.189504.1 schema:alternateName Department of Physics, Boston University, 02215, Boston, Massachusetts, USA
128 schema:name Department of Physics, Boston University, 02215, Boston, Massachusetts, USA
129 IBM Research Division, Almaden Research Center, 650 Harry Road, 95120–6099, San Jose, California, USA
130 rdf:type schema:Organization
131 grid-institutes:grid.38142.3c schema:alternateName Department of Physics and Harvard-Smithsonian Observatory, Harvard University, 17 Oxford Street, 02138, Cambridge, Massachusetts, USA
132 schema:name Department of Physics and Harvard-Smithsonian Observatory, Harvard University, 17 Oxford Street, 02138, Cambridge, Massachusetts, USA
133 rdf:type schema:Organization
134 grid-institutes:grid.481551.c schema:alternateName IBM Research Division, Almaden Research Center, 650 Harry Road, 95120–6099, San Jose, California, USA
135 schema:name IBM Research Division, Almaden Research Center, 650 Harry Road, 95120–6099, San Jose, California, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...