Self-organized honeycomb morphology of star-polymer polystyrene films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-06

AUTHORS

Gilles Widawski, Michel Rawiso, Bernard François

ABSTRACT

AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10–30 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2–10 µm in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science. More... »

PAGES

387-389

Journal

TITLE

Nature

ISSUE

6479

VOLUME

369

Related Patents

  • Partially Submerged Bead Monolayer
  • Planarizing Agents And Devices
  • Conductive Polymer/Fullerene Blend Thin Films With Honeycomb Framework For Transparent Photovoltaic Application
  • Living Synthesis Of Conducting Polymers Including Regioregular Polymers, Polythiophenes, And Block Copolymers
  • Electroluminescent Materials And Methods Of Manufacture And Use
  • Hole Injection/Transport Layer Compositions And Devices
  • Planarizing Agents And Devices
  • Polythiophenes, Block Copolymers Made Therefrom, And Methods Of Forming The Same
  • Electroluminescent Devices Comprising Insulator-Free Metal Grids
  • Generation Of Surface Coating Diversity
  • Vertically Phase-Separating Semiconducting Organic Material Layers
  • Oxide Shell Structures And Methods Of Making Oxide Shell Structures
  • Polythiophenes, Block Copolymers Made Therefrom, And Methods Of Forming The Same
  • Method For Designing Surfaces
  • Charge Injection And Transport Layers
  • Electroluminescent Materials And Methods Of Manufacture And Use
  • Partially Submerged Bead Monolayer
  • Use Of Metal Complexes
  • Charge Injection And Transport Layers
  • Charge Injection And Transport Layers
  • Process For Producing Micropillar Structure
  • Living Synthesis Of Conducting Polymers Including Regioregular Polymers, Polythiophenes, And Block Copolymers
  • Polythiophenes, Block Copolymers Made Therefrom, And Methods Of Forming The Same
  • Method And Apparatus For Nanoparticle Transport And Detection
  • Porous Polymer Structures And Methods And Articles Relating Thereto
  • Microfluidic Array Supporting A Lipid Bilayer Assembly
  • Method Of Patterning And Product(S) Obtained Therefrom
  • Planarizing Agents And Devices
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/369387a0

    DOI

    http://dx.doi.org/10.1038/369387a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046973421


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Widawski", 
            "givenName": "Gilles", 
            "id": "sg:person.013550467277.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013550467277.92"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Rawiso", 
            "givenName": "Michel", 
            "id": "sg:person.01204210733.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204210733.15"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Fran\u00e7ois", 
            "givenName": "Bernard", 
            "id": "sg:person.010020162316.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020162316.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/macp.1991.021921008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021472591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/v69-560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023246718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0032-3861(88)90151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029547204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0032-3861(88)90151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029547204"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-06", 
        "datePublishedReg": "1994-06-01", 
        "description": "AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10\u201330 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2\u201310 \u00b5m in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1038/369387a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6479", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "369"
          }
        ], 
        "name": "Self-organized honeycomb morphology of star-polymer polystyrene films", 
        "pagination": "387-389", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dfc3dc7a95da42fa319fa8ae4fe1acedc6bdcb4b3b32506fc9530fe885bf70df"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/369387a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046973421"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/369387a0", 
          "https://app.dimensions.ai/details/publication/pub.1046973421"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/369387a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/369387a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/369387a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/369387a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/369387a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/369387a0 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author Nec60ab2cf0894f0e89eea339251ee803
    4 schema:citation https://doi.org/10.1002/macp.1991.021921008
    5 https://doi.org/10.1016/0032-3861(88)90151-6
    6 https://doi.org/10.1139/v69-560
    7 schema:datePublished 1994-06
    8 schema:datePublishedReg 1994-06-01
    9 schema:description AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10–30 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2–10 µm in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science.
    10 schema:genre non_research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N4096902258bf4aabb90ebb318e2b547d
    14 Nf1ce7829d1d4447b84cc0fd70c4ebc5c
    15 sg:journal.1018957
    16 schema:name Self-organized honeycomb morphology of star-polymer polystyrene films
    17 schema:pagination 387-389
    18 schema:productId N96dbd39f8d724d0b84e6dbd1b093b99c
    19 Nbabfe6cc95c043a2a647df256aeae877
    20 Nfb98a936e5ee43acb17fc83ff55c1316
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046973421
    22 https://doi.org/10.1038/369387a0
    23 schema:sdDatePublished 2019-04-10T22:19
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N24a11ab5049a423f9194a7db2b348b6c
    26 schema:url http://www.nature.com/articles/369387a0
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N24a11ab5049a423f9194a7db2b348b6c schema:name Springer Nature - SN SciGraph project
    31 rdf:type schema:Organization
    32 N4096902258bf4aabb90ebb318e2b547d schema:volumeNumber 369
    33 rdf:type schema:PublicationVolume
    34 N65e26b9c4ccd455daf4b1eaad1bfdc5e rdf:first sg:person.01204210733.15
    35 rdf:rest Ne5dc34e6c0e6471ebaf614fe4a7d8ecd
    36 N96dbd39f8d724d0b84e6dbd1b093b99c schema:name dimensions_id
    37 schema:value pub.1046973421
    38 rdf:type schema:PropertyValue
    39 Nbabfe6cc95c043a2a647df256aeae877 schema:name doi
    40 schema:value 10.1038/369387a0
    41 rdf:type schema:PropertyValue
    42 Ne5dc34e6c0e6471ebaf614fe4a7d8ecd rdf:first sg:person.010020162316.54
    43 rdf:rest rdf:nil
    44 Nec60ab2cf0894f0e89eea339251ee803 rdf:first sg:person.013550467277.92
    45 rdf:rest N65e26b9c4ccd455daf4b1eaad1bfdc5e
    46 Nf1ce7829d1d4447b84cc0fd70c4ebc5c schema:issueNumber 6479
    47 rdf:type schema:PublicationIssue
    48 Nfb98a936e5ee43acb17fc83ff55c1316 schema:name readcube_id
    49 schema:value dfc3dc7a95da42fa319fa8ae4fe1acedc6bdcb4b3b32506fc9530fe885bf70df
    50 rdf:type schema:PropertyValue
    51 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Chemical Sciences
    53 rdf:type schema:DefinedTerm
    54 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Macromolecular and Materials Chemistry
    56 rdf:type schema:DefinedTerm
    57 sg:journal.1018957 schema:issn 0090-0028
    58 1476-4687
    59 schema:name Nature
    60 rdf:type schema:Periodical
    61 sg:person.010020162316.54 schema:familyName François
    62 schema:givenName Bernard
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020162316.54
    64 rdf:type schema:Person
    65 sg:person.01204210733.15 schema:familyName Rawiso
    66 schema:givenName Michel
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204210733.15
    68 rdf:type schema:Person
    69 sg:person.013550467277.92 schema:familyName Widawski
    70 schema:givenName Gilles
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013550467277.92
    72 rdf:type schema:Person
    73 https://doi.org/10.1002/macp.1991.021921008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021472591
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1016/0032-3861(88)90151-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029547204
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1139/v69-560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023246718
    78 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...