Self-organized honeycomb morphology of star-polymer polystyrene films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-06

AUTHORS

Gilles Widawski, Michel Rawiso, Bernard François

ABSTRACT

AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10–30 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2–10 µm in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science. More... »

PAGES

387-389

Journal

TITLE

Nature

ISSUE

6479

VOLUME

369

Related Patents

  • Partially Submerged Bead Monolayer
  • Planarizing Agents And Devices
  • Conductive Polymer/Fullerene Blend Thin Films With Honeycomb Framework For Transparent Photovoltaic Application
  • Living Synthesis Of Conducting Polymers Including Regioregular Polymers, Polythiophenes, And Block Copolymers
  • Electroluminescent Materials And Methods Of Manufacture And Use
  • Hole Injection/Transport Layer Compositions And Devices
  • Planarizing Agents And Devices
  • Polythiophenes, Block Copolymers Made Therefrom, And Methods Of Forming The Same
  • Electroluminescent Devices Comprising Insulator-Free Metal Grids
  • Generation Of Surface Coating Diversity
  • Vertically Phase-Separating Semiconducting Organic Material Layers
  • Oxide Shell Structures And Methods Of Making Oxide Shell Structures
  • Polythiophenes, Block Copolymers Made Therefrom, And Methods Of Forming The Same
  • Method For Designing Surfaces
  • Charge Injection And Transport Layers
  • Electroluminescent Materials And Methods Of Manufacture And Use
  • Partially Submerged Bead Monolayer
  • Use Of Metal Complexes
  • Charge Injection And Transport Layers
  • Charge Injection And Transport Layers
  • Process For Producing Micropillar Structure
  • Living Synthesis Of Conducting Polymers Including Regioregular Polymers, Polythiophenes, And Block Copolymers
  • Polythiophenes, Block Copolymers Made Therefrom, And Methods Of Forming The Same
  • Porous Polymer Structures And Methods And Articles Relating Thereto
  • Method And Apparatus For Nanoparticle Transport And Detection
  • Planarizing Agents And Devices
  • Method Of Patterning And Product(S) Obtained Therefrom
  • Microfluidic Array Supporting A Lipid Bilayer Assembly
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/369387a0

    DOI

    http://dx.doi.org/10.1038/369387a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046973421


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Widawski", 
            "givenName": "Gilles", 
            "id": "sg:person.013550467277.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013550467277.92"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Rawiso", 
            "givenName": "Michel", 
            "id": "sg:person.01204210733.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204210733.15"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Fran\u00e7ois", 
            "givenName": "Bernard", 
            "id": "sg:person.010020162316.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020162316.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/macp.1991.021921008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021472591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/v69-560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023246718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0032-3861(88)90151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029547204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0032-3861(88)90151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029547204"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-06", 
        "datePublishedReg": "1994-06-01", 
        "description": "AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10\u201330 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2\u201310 \u00b5m in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1038/369387a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6479", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "369"
          }
        ], 
        "name": "Self-organized honeycomb morphology of star-polymer polystyrene films", 
        "pagination": "387-389", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dfc3dc7a95da42fa319fa8ae4fe1acedc6bdcb4b3b32506fc9530fe885bf70df"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/369387a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046973421"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/369387a0", 
          "https://app.dimensions.ai/details/publication/pub.1046973421"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/369387a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/369387a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/369387a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/369387a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/369387a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/369387a0 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author N8f59650f352d4a82af9d6664aab96b5b
    4 schema:citation https://doi.org/10.1002/macp.1991.021921008
    5 https://doi.org/10.1016/0032-3861(88)90151-6
    6 https://doi.org/10.1139/v69-560
    7 schema:datePublished 1994-06
    8 schema:datePublishedReg 1994-06-01
    9 schema:description AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10–30 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2–10 µm in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science.
    10 schema:genre non_research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N81ba83814ecd4f3daa081d6072249f86
    14 N875bab38b33e46ad820126724e04e5ab
    15 sg:journal.1018957
    16 schema:name Self-organized honeycomb morphology of star-polymer polystyrene films
    17 schema:pagination 387-389
    18 schema:productId N0bddaef486c2435c937c5e927c84f93d
    19 Nb1ffa92947b2453a9d2245daa906212d
    20 Nc5de1cd89cca41d4a617afd72fb7a93a
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046973421
    22 https://doi.org/10.1038/369387a0
    23 schema:sdDatePublished 2019-04-10T22:19
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Nd9f77b3018ba48858fdf3527cb1f2e04
    26 schema:url http://www.nature.com/articles/369387a0
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N0bddaef486c2435c937c5e927c84f93d schema:name doi
    31 schema:value 10.1038/369387a0
    32 rdf:type schema:PropertyValue
    33 N81ba83814ecd4f3daa081d6072249f86 schema:issueNumber 6479
    34 rdf:type schema:PublicationIssue
    35 N875bab38b33e46ad820126724e04e5ab schema:volumeNumber 369
    36 rdf:type schema:PublicationVolume
    37 N8f59650f352d4a82af9d6664aab96b5b rdf:first sg:person.013550467277.92
    38 rdf:rest Nb69f1462c77a4046b3dcddc1fc3f9099
    39 Nb1ffa92947b2453a9d2245daa906212d schema:name dimensions_id
    40 schema:value pub.1046973421
    41 rdf:type schema:PropertyValue
    42 Nb69f1462c77a4046b3dcddc1fc3f9099 rdf:first sg:person.01204210733.15
    43 rdf:rest Nf5edf5c3d93a4ad0b5715d0d8c3a47d6
    44 Nc5de1cd89cca41d4a617afd72fb7a93a schema:name readcube_id
    45 schema:value dfc3dc7a95da42fa319fa8ae4fe1acedc6bdcb4b3b32506fc9530fe885bf70df
    46 rdf:type schema:PropertyValue
    47 Nd9f77b3018ba48858fdf3527cb1f2e04 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nf5edf5c3d93a4ad0b5715d0d8c3a47d6 rdf:first sg:person.010020162316.54
    50 rdf:rest rdf:nil
    51 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Chemical Sciences
    53 rdf:type schema:DefinedTerm
    54 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Macromolecular and Materials Chemistry
    56 rdf:type schema:DefinedTerm
    57 sg:journal.1018957 schema:issn 0090-0028
    58 1476-4687
    59 schema:name Nature
    60 rdf:type schema:Periodical
    61 sg:person.010020162316.54 schema:familyName François
    62 schema:givenName Bernard
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020162316.54
    64 rdf:type schema:Person
    65 sg:person.01204210733.15 schema:familyName Rawiso
    66 schema:givenName Michel
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204210733.15
    68 rdf:type schema:Person
    69 sg:person.013550467277.92 schema:familyName Widawski
    70 schema:givenName Gilles
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013550467277.92
    72 rdf:type schema:Person
    73 https://doi.org/10.1002/macp.1991.021921008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021472591
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1016/0032-3861(88)90151-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029547204
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1139/v69-560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023246718
    78 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...