Model assessment of the role of natural variability in recent global warming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-02

AUTHORS

R. J. Stouffer, S. Manabe, K. Ya. Vinnikov

ABSTRACT

SINCE the late nineteenth century, the global mean surface air temperature has been increasing at the rate of about 0.5 °C per century1–3, but our poor understanding of low-frequency natural climate variability has made it very difficult to determine whether the observed warming trend is attributable to the enhanced green-house effect associated with increased atmospheric concentrations of greenhouse gases4,5. Here we evaluate the observed warming trend using a 1,000-year time series of global temperature obtained from a mathematical model of the coupled ocean–atmosphere–land system. We find that the model approximately reproduces the magnitude of the annual to interdecadal variation in global mean surface air temperature. But throughout the simulated time series no temperature change as large as 0.5 °C per century is sustained for more than a few decades. Assuming that the model is realistic, these results suggest that the observed trend is not a natural feature of the interaction between the atmosphere and oceans. Instead, it may have been induced by a sustained change in the thermal forcing, such as that resulting from changes in atmospheric greenhouse gas concentrations and aerosol loading. More... »

PAGES

634

Journal

TITLE

Nature

ISSUE

6464

VOLUME

367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/367634a0

DOI

http://dx.doi.org/10.1038/367634a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035762020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Stouffer", 
        "givenName": "R. J.", 
        "id": "sg:person.015367614247.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Manabe", 
        "givenName": "S.", 
        "id": "sg:person.012361147621.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361147621.05"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vinnikov", 
        "givenName": "K. Ya.", 
        "id": "sg:person.015771513271.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771513271.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/344324a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000092146", 
          "https://doi.org/10.1038/344324a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004954487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc084ic05p02503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008986581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1976.tb00696.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010935631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1992)005<0105:troaco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033366210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd093id08p09341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/342660a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981833", 
          "https://doi.org/10.1038/342660a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1993)006<1993:ivottc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050865955"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-02", 
    "datePublishedReg": "1994-02-01", 
    "description": "SINCE the late nineteenth century, the global mean surface air temperature has been increasing at the rate of about 0.5 \u00b0C per century1\u20133, but our poor understanding of low-frequency natural climate variability has made it very difficult to determine whether the observed warming trend is attributable to the enhanced green-house effect associated with increased atmospheric concentrations of greenhouse gases4,5. Here we evaluate the observed warming trend using a 1,000-year time series of global temperature obtained from a mathematical model of the coupled ocean\u2013atmosphere\u2013land system. We find that the model approximately reproduces the magnitude of the annual to interdecadal variation in global mean surface air temperature. But throughout the simulated time series no temperature change as large as 0.5 \u00b0C per century is sustained for more than a few decades. Assuming that the model is realistic, these results suggest that the observed trend is not a natural feature of the interaction between the atmosphere and oceans. Instead, it may have been induced by a sustained change in the thermal forcing, such as that resulting from changes in atmospheric greenhouse gas concentrations and aerosol loading.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/367634a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6464", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "Model assessment of the role of natural variability in recent global warming", 
    "pagination": "634", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa5b785db65fbbf59454f308184e35d13952797c1e2731c49acd68dd6f613efb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/367634a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035762020"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/367634a0", 
      "https://app.dimensions.ai/details/publication/pub.1035762020"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/367634a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/367634a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/367634a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/367634a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/367634a0'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/367634a0 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N04fff09662194b29a9d47a1caae4951a
4 schema:citation sg:pub.10.1038/342660a0
5 sg:pub.10.1038/344324a0
6 https://doi.org/10.1029/jc084ic05p02503
7 https://doi.org/10.1029/jd093id08p09341
8 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
9 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2
10 https://doi.org/10.1175/1520-0442(1992)005<0105:troaco>2.0.co;2
11 https://doi.org/10.1175/1520-0442(1993)006<1993:ivottc>2.0.co;2
12 schema:datePublished 1994-02
13 schema:datePublishedReg 1994-02-01
14 schema:description SINCE the late nineteenth century, the global mean surface air temperature has been increasing at the rate of about 0.5 °C per century1–3, but our poor understanding of low-frequency natural climate variability has made it very difficult to determine whether the observed warming trend is attributable to the enhanced green-house effect associated with increased atmospheric concentrations of greenhouse gases4,5. Here we evaluate the observed warming trend using a 1,000-year time series of global temperature obtained from a mathematical model of the coupled ocean–atmosphere–land system. We find that the model approximately reproduces the magnitude of the annual to interdecadal variation in global mean surface air temperature. But throughout the simulated time series no temperature change as large as 0.5 °C per century is sustained for more than a few decades. Assuming that the model is realistic, these results suggest that the observed trend is not a natural feature of the interaction between the atmosphere and oceans. Instead, it may have been induced by a sustained change in the thermal forcing, such as that resulting from changes in atmospheric greenhouse gas concentrations and aerosol loading.
15 schema:genre non_research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N92506e7eb85646ab84b50c8ebb160d2d
19 Nbd0286fb78f146dabffe0dbbae1e872f
20 sg:journal.1018957
21 schema:name Model assessment of the role of natural variability in recent global warming
22 schema:pagination 634
23 schema:productId N0c86fe48b2d84f6e9eec6fd1678e53fa
24 Nc792fdcd03344e00ba27a8b089ed87f5
25 Nd6d04a74ab8943269c2a9aefaf359f2d
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035762020
27 https://doi.org/10.1038/367634a0
28 schema:sdDatePublished 2019-04-10T18:56
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nf361f5f12d284c6b934a5856f08414bf
31 schema:url https://www.nature.com/articles/367634a0
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N04fff09662194b29a9d47a1caae4951a rdf:first sg:person.015367614247.25
36 rdf:rest N16f9949af1144eb8834a1745ec2bda2f
37 N0a0f70e4d1ec41abb66aa6786bb5c590 rdf:first sg:person.015771513271.21
38 rdf:rest rdf:nil
39 N0c86fe48b2d84f6e9eec6fd1678e53fa schema:name doi
40 schema:value 10.1038/367634a0
41 rdf:type schema:PropertyValue
42 N16f9949af1144eb8834a1745ec2bda2f rdf:first sg:person.012361147621.05
43 rdf:rest N0a0f70e4d1ec41abb66aa6786bb5c590
44 N92506e7eb85646ab84b50c8ebb160d2d schema:volumeNumber 367
45 rdf:type schema:PublicationVolume
46 Nbd0286fb78f146dabffe0dbbae1e872f schema:issueNumber 6464
47 rdf:type schema:PublicationIssue
48 Nc792fdcd03344e00ba27a8b089ed87f5 schema:name readcube_id
49 schema:value aa5b785db65fbbf59454f308184e35d13952797c1e2731c49acd68dd6f613efb
50 rdf:type schema:PropertyValue
51 Nd6d04a74ab8943269c2a9aefaf359f2d schema:name dimensions_id
52 schema:value pub.1035762020
53 rdf:type schema:PropertyValue
54 Nf361f5f12d284c6b934a5856f08414bf schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
57 schema:name Earth Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
60 schema:name Oceanography
61 rdf:type schema:DefinedTerm
62 sg:journal.1018957 schema:issn 0090-0028
63 1476-4687
64 schema:name Nature
65 rdf:type schema:Periodical
66 sg:person.012361147621.05 schema:familyName Manabe
67 schema:givenName S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361147621.05
69 rdf:type schema:Person
70 sg:person.015367614247.25 schema:familyName Stouffer
71 schema:givenName R. J.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25
73 rdf:type schema:Person
74 sg:person.015771513271.21 schema:familyName Vinnikov
75 schema:givenName K. Ya.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771513271.21
77 rdf:type schema:Person
78 sg:pub.10.1038/342660a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981833
79 https://doi.org/10.1038/342660a0
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/344324a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092146
82 https://doi.org/10.1038/344324a0
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1029/jc084ic05p02503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008986581
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1029/jd093id08p09341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346451
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/j.2153-3490.1976.tb00696.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010935631
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004954487
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1175/1520-0442(1992)005<0105:troaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033366210
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1175/1520-0442(1993)006<1993:ivottc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050865955
95 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...