Deformation-induced nanocrystal formation in shear bands of amorphous alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-02

AUTHORS

H. Chen, Y. He, G. J. Shiflet, S. J. Poon

ABSTRACT

AMORPHOUS alloys formed by rapid solidification of a metallic melt are of considerable technological interest as high-strength materials1–8. As they are not in thermodynamic equilibrium, these materials tend to crystallize on heating9,10. A high degree of crystallization leads to embrittlement, but if it can be arrested when the crystallites are of only nanometre dimensions, the resulting amorphous–nanocrystalline composite actually has greater strength than the original amorphous material11. There is consequently much interest in understanding the mechanisms of crystallization. Previous studies have suggested that mechanical deformation can induce crystallization12–16. Here we report the direct observation of crystallization within the shear bands of aluminium-based amorphous alloys induced by bending. The crystals are face-centred cubic aluminium, 7–10 nm in diameter, and seem to form as a consequence of local atomic rearrangements in regions of high plastic strain. We suggest that mechanical deformation might therefore be used to form high-strength amorphous–nanocrystalline composites. More... »

PAGES

541-543

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/367541a0

DOI

http://dx.doi.org/10.1038/367541a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009820657


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.225262.3", 
          "name": [
            "Department of Materials Science and Engineering", 
            "Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiflet", 
        "givenName": "G. J.", 
        "id": "sg:person.015100642757.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100642757.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. J.", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3540104402_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009843020", 
          "https://doi.org/10.1007/3540104402_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00541671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053417930", 
          "https://doi.org/10.1007/bf00541671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/341183a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040872563", 
          "https://doi.org/10.1038/341183a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-02", 
    "datePublishedReg": "1994-02-01", 
    "description": "AMORPHOUS alloys formed by rapid solidification of a metallic melt are of considerable technological interest as high-strength materials1\u20138. As they are not in thermodynamic equilibrium, these materials tend to crystallize on heating9,10. A high degree of crystallization leads to embrittlement, but if it can be arrested when the crystallites are of only nanometre dimensions, the resulting amorphous\u2013nanocrystalline composite actually has greater strength than the original amorphous material11. There is consequently much interest in understanding the mechanisms of crystallization. Previous studies have suggested that mechanical deformation can induce crystallization12\u201316. Here we report the direct observation of crystallization within the shear bands of aluminium-based amorphous alloys induced by bending. The crystals are face-centred cubic aluminium, 7\u201310 nm in diameter, and seem to form as a consequence of local atomic rearrangements in regions of high plastic strain. We suggest that mechanical deformation might therefore be used to form high-strength amorphous\u2013nanocrystalline composites.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/367541a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6463", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "keywords": [
      "amorphous\u2013nanocrystalline composite", 
      "amorphous alloys", 
      "shear bands", 
      "mechanical deformation", 
      "aluminium-based amorphous alloys", 
      "high plastic strains", 
      "considerable technological interest", 
      "plastic strain", 
      "rapid solidification", 
      "alloy", 
      "local atomic rearrangements", 
      "face-centered cubic aluminum", 
      "metallic melts", 
      "nanocrystal formation", 
      "technological interest", 
      "composites", 
      "atomic rearrangement", 
      "deformation", 
      "mechanism of crystallization", 
      "greater strength", 
      "thermodynamic equilibrium", 
      "solidification", 
      "crystallization", 
      "aluminum", 
      "cubic aluminum", 
      "crystallites", 
      "strength", 
      "materials", 
      "melt", 
      "diameter", 
      "band", 
      "high degree", 
      "direct observation", 
      "crystals", 
      "formation", 
      "interest", 
      "strains", 
      "equilibrium", 
      "dimensions", 
      "observations", 
      "mechanism", 
      "degree", 
      "region", 
      "previous studies", 
      "study", 
      "consequences", 
      "rearrangement"
    ], 
    "name": "Deformation-induced nanocrystal formation in shear bands of amorphous alloys", 
    "pagination": "541-543", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009820657"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/367541a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/367541a0", 
      "https://app.dimensions.ai/details/publication/pub.1009820657"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_261.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/367541a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/367541a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/367541a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/367541a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/367541a0'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      76 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/367541a0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N994b123572be4e29bfeb09d7d0797d51
4 schema:citation sg:pub.10.1007/3540104402_10
5 sg:pub.10.1007/bf00541671
6 sg:pub.10.1038/341183a0
7 schema:datePublished 1994-02
8 schema:datePublishedReg 1994-02-01
9 schema:description AMORPHOUS alloys formed by rapid solidification of a metallic melt are of considerable technological interest as high-strength materials1–8. As they are not in thermodynamic equilibrium, these materials tend to crystallize on heating9,10. A high degree of crystallization leads to embrittlement, but if it can be arrested when the crystallites are of only nanometre dimensions, the resulting amorphous–nanocrystalline composite actually has greater strength than the original amorphous material11. There is consequently much interest in understanding the mechanisms of crystallization. Previous studies have suggested that mechanical deformation can induce crystallization12–16. Here we report the direct observation of crystallization within the shear bands of aluminium-based amorphous alloys induced by bending. The crystals are face-centred cubic aluminium, 7–10 nm in diameter, and seem to form as a consequence of local atomic rearrangements in regions of high plastic strain. We suggest that mechanical deformation might therefore be used to form high-strength amorphous–nanocrystalline composites.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N942e08f69c5b435ab45cec414ee9f94e
14 Nac42bd475f9e46d7ab690a3c7644ce49
15 sg:journal.1018957
16 schema:keywords alloy
17 aluminium-based amorphous alloys
18 aluminum
19 amorphous alloys
20 amorphous–nanocrystalline composite
21 atomic rearrangement
22 band
23 composites
24 consequences
25 considerable technological interest
26 crystallites
27 crystallization
28 crystals
29 cubic aluminum
30 deformation
31 degree
32 diameter
33 dimensions
34 direct observation
35 equilibrium
36 face-centered cubic aluminum
37 formation
38 greater strength
39 high degree
40 high plastic strains
41 interest
42 local atomic rearrangements
43 materials
44 mechanical deformation
45 mechanism
46 mechanism of crystallization
47 melt
48 metallic melts
49 nanocrystal formation
50 observations
51 plastic strain
52 previous studies
53 rapid solidification
54 rearrangement
55 region
56 shear bands
57 solidification
58 strains
59 strength
60 study
61 technological interest
62 thermodynamic equilibrium
63 schema:name Deformation-induced nanocrystal formation in shear bands of amorphous alloys
64 schema:pagination 541-543
65 schema:productId N8e8a5f05c7f1468f8d1e1a0e3a0366fd
66 N9446df8a93c049698caaa64d0a3e81dc
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009820657
68 https://doi.org/10.1038/367541a0
69 schema:sdDatePublished 2022-06-01T22:02
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N8e1fe49826754be491ed2a0a9a087d5d
72 schema:url https://doi.org/10.1038/367541a0
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N70de4085979f469fabca81d33a331faf rdf:first sg:person.015100642757.27
77 rdf:rest N94adafa16ce8405d90b0cdd4c8575975
78 N8e1fe49826754be491ed2a0a9a087d5d schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N8e8a5f05c7f1468f8d1e1a0e3a0366fd schema:name doi
81 schema:value 10.1038/367541a0
82 rdf:type schema:PropertyValue
83 N942e08f69c5b435ab45cec414ee9f94e schema:issueNumber 6463
84 rdf:type schema:PublicationIssue
85 N9446df8a93c049698caaa64d0a3e81dc schema:name dimensions_id
86 schema:value pub.1009820657
87 rdf:type schema:PropertyValue
88 N94adafa16ce8405d90b0cdd4c8575975 rdf:first sg:person.010252015157.28
89 rdf:rest rdf:nil
90 N994b123572be4e29bfeb09d7d0797d51 rdf:first Ne0371472403140c393f99c8b107c1f41
91 rdf:rest N9ef5ddad533f467785f8c1dd873e53ea
92 N9ef5ddad533f467785f8c1dd873e53ea rdf:first Nf752870fe01c419dbc69161f89514b37
93 rdf:rest N70de4085979f469fabca81d33a331faf
94 Nac42bd475f9e46d7ab690a3c7644ce49 schema:volumeNumber 367
95 rdf:type schema:PublicationVolume
96 Ne0371472403140c393f99c8b107c1f41 schema:affiliation grid-institutes:grid.225262.3
97 schema:familyName Chen
98 schema:givenName H.
99 rdf:type schema:Person
100 Nf752870fe01c419dbc69161f89514b37 schema:affiliation grid-institutes:grid.27755.32
101 schema:familyName He
102 schema:givenName Y.
103 rdf:type schema:Person
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1018957 schema:issn 0028-0836
111 1476-4687
112 schema:name Nature
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
116 schema:familyName Poon
117 schema:givenName S. J.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
119 rdf:type schema:Person
120 sg:person.015100642757.27 schema:affiliation grid-institutes:grid.27755.32
121 schema:familyName Shiflet
122 schema:givenName G. J.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100642757.27
124 rdf:type schema:Person
125 sg:pub.10.1007/3540104402_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009843020
126 https://doi.org/10.1007/3540104402_10
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf00541671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053417930
129 https://doi.org/10.1007/bf00541671
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/341183a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040872563
132 https://doi.org/10.1038/341183a0
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.225262.3 schema:alternateName Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA
135 schema:name Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA
136 Department of Materials Science and Engineering
137 rdf:type schema:Organization
138 grid-institutes:grid.27755.32 schema:alternateName Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA
139 schema:name Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...