Ontology type: schema:ScholarlyArticle
1994-02
AUTHORSH. Chen, Y. He, G. J. Shiflet, S. J. Poon
ABSTRACTAMORPHOUS alloys formed by rapid solidification of a metallic melt are of considerable technological interest as high-strength materials1–8. As they are not in thermodynamic equilibrium, these materials tend to crystallize on heating9,10. A high degree of crystallization leads to embrittlement, but if it can be arrested when the crystallites are of only nanometre dimensions, the resulting amorphous–nanocrystalline composite actually has greater strength than the original amorphous material11. There is consequently much interest in understanding the mechanisms of crystallization. Previous studies have suggested that mechanical deformation can induce crystallization12–16. Here we report the direct observation of crystallization within the shear bands of aluminium-based amorphous alloys induced by bending. The crystals are face-centred cubic aluminium, 7–10 nm in diameter, and seem to form as a consequence of local atomic rearrangements in regions of high plastic strain. We suggest that mechanical deformation might therefore be used to form high-strength amorphous–nanocrystalline composites. More... »
PAGES541-543
http://scigraph.springernature.com/pub.10.1038/367541a0
DOIhttp://dx.doi.org/10.1038/367541a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009820657
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA",
"id": "http://www.grid.ac/institutes/grid.225262.3",
"name": [
"Department of Materials Science and Engineering",
"Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "H.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA",
"id": "http://www.grid.ac/institutes/grid.27755.32",
"name": [
"Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA"
],
"type": "Organization"
},
"familyName": "He",
"givenName": "Y.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA",
"id": "http://www.grid.ac/institutes/grid.27755.32",
"name": [
"Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA"
],
"type": "Organization"
},
"familyName": "Shiflet",
"givenName": "G. J.",
"id": "sg:person.015100642757.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100642757.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA",
"id": "http://www.grid.ac/institutes/grid.27755.32",
"name": [
"Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA"
],
"type": "Organization"
},
"familyName": "Poon",
"givenName": "S. J.",
"id": "sg:person.010252015157.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/3540104402_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009843020",
"https://doi.org/10.1007/3540104402_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00541671",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053417930",
"https://doi.org/10.1007/bf00541671"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/341183a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040872563",
"https://doi.org/10.1038/341183a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-02",
"datePublishedReg": "1994-02-01",
"description": "AMORPHOUS alloys formed by rapid solidification of a metallic melt are of considerable technological interest as high-strength materials1\u20138. As they are not in thermodynamic equilibrium, these materials tend to crystallize on heating9,10. A high degree of crystallization leads to embrittlement, but if it can be arrested when the crystallites are of only nanometre dimensions, the resulting amorphous\u2013nanocrystalline composite actually has greater strength than the original amorphous material11. There is consequently much interest in understanding the mechanisms of crystallization. Previous studies have suggested that mechanical deformation can induce crystallization12\u201316. Here we report the direct observation of crystallization within the shear bands of aluminium-based amorphous alloys induced by bending. The crystals are face-centred cubic aluminium, 7\u201310 nm in diameter, and seem to form as a consequence of local atomic rearrangements in regions of high plastic strain. We suggest that mechanical deformation might therefore be used to form high-strength amorphous\u2013nanocrystalline composites.",
"genre": "article",
"id": "sg:pub.10.1038/367541a0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6463",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "367"
}
],
"keywords": [
"amorphous\u2013nanocrystalline composite",
"amorphous alloys",
"shear bands",
"mechanical deformation",
"aluminium-based amorphous alloys",
"high plastic strains",
"considerable technological interest",
"plastic strain",
"rapid solidification",
"alloy",
"local atomic rearrangements",
"face-centered cubic aluminum",
"metallic melts",
"nanocrystal formation",
"technological interest",
"composites",
"atomic rearrangement",
"deformation",
"mechanism of crystallization",
"greater strength",
"thermodynamic equilibrium",
"solidification",
"crystallization",
"aluminum",
"cubic aluminum",
"crystallites",
"strength",
"materials",
"melt",
"diameter",
"band",
"high degree",
"direct observation",
"crystals",
"formation",
"interest",
"strains",
"equilibrium",
"dimensions",
"observations",
"mechanism",
"degree",
"region",
"previous studies",
"study",
"consequences",
"rearrangement"
],
"name": "Deformation-induced nanocrystal formation in shear bands of amorphous alloys",
"pagination": "541-543",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009820657"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/367541a0"
]
}
],
"sameAs": [
"https://doi.org/10.1038/367541a0",
"https://app.dimensions.ai/details/publication/pub.1009820657"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_261.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/367541a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/367541a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/367541a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/367541a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/367541a0'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
22 PREDICATES
76 URIs
65 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/367541a0 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N994b123572be4e29bfeb09d7d0797d51 |
4 | ″ | schema:citation | sg:pub.10.1007/3540104402_10 |
5 | ″ | ″ | sg:pub.10.1007/bf00541671 |
6 | ″ | ″ | sg:pub.10.1038/341183a0 |
7 | ″ | schema:datePublished | 1994-02 |
8 | ″ | schema:datePublishedReg | 1994-02-01 |
9 | ″ | schema:description | AMORPHOUS alloys formed by rapid solidification of a metallic melt are of considerable technological interest as high-strength materials1–8. As they are not in thermodynamic equilibrium, these materials tend to crystallize on heating9,10. A high degree of crystallization leads to embrittlement, but if it can be arrested when the crystallites are of only nanometre dimensions, the resulting amorphous–nanocrystalline composite actually has greater strength than the original amorphous material11. There is consequently much interest in understanding the mechanisms of crystallization. Previous studies have suggested that mechanical deformation can induce crystallization12–16. Here we report the direct observation of crystallization within the shear bands of aluminium-based amorphous alloys induced by bending. The crystals are face-centred cubic aluminium, 7–10 nm in diameter, and seem to form as a consequence of local atomic rearrangements in regions of high plastic strain. We suggest that mechanical deformation might therefore be used to form high-strength amorphous–nanocrystalline composites. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N942e08f69c5b435ab45cec414ee9f94e |
14 | ″ | ″ | Nac42bd475f9e46d7ab690a3c7644ce49 |
15 | ″ | ″ | sg:journal.1018957 |
16 | ″ | schema:keywords | alloy |
17 | ″ | ″ | aluminium-based amorphous alloys |
18 | ″ | ″ | aluminum |
19 | ″ | ″ | amorphous alloys |
20 | ″ | ″ | amorphous–nanocrystalline composite |
21 | ″ | ″ | atomic rearrangement |
22 | ″ | ″ | band |
23 | ″ | ″ | composites |
24 | ″ | ″ | consequences |
25 | ″ | ″ | considerable technological interest |
26 | ″ | ″ | crystallites |
27 | ″ | ″ | crystallization |
28 | ″ | ″ | crystals |
29 | ″ | ″ | cubic aluminum |
30 | ″ | ″ | deformation |
31 | ″ | ″ | degree |
32 | ″ | ″ | diameter |
33 | ″ | ″ | dimensions |
34 | ″ | ″ | direct observation |
35 | ″ | ″ | equilibrium |
36 | ″ | ″ | face-centered cubic aluminum |
37 | ″ | ″ | formation |
38 | ″ | ″ | greater strength |
39 | ″ | ″ | high degree |
40 | ″ | ″ | high plastic strains |
41 | ″ | ″ | interest |
42 | ″ | ″ | local atomic rearrangements |
43 | ″ | ″ | materials |
44 | ″ | ″ | mechanical deformation |
45 | ″ | ″ | mechanism |
46 | ″ | ″ | mechanism of crystallization |
47 | ″ | ″ | melt |
48 | ″ | ″ | metallic melts |
49 | ″ | ″ | nanocrystal formation |
50 | ″ | ″ | observations |
51 | ″ | ″ | plastic strain |
52 | ″ | ″ | previous studies |
53 | ″ | ″ | rapid solidification |
54 | ″ | ″ | rearrangement |
55 | ″ | ″ | region |
56 | ″ | ″ | shear bands |
57 | ″ | ″ | solidification |
58 | ″ | ″ | strains |
59 | ″ | ″ | strength |
60 | ″ | ″ | study |
61 | ″ | ″ | technological interest |
62 | ″ | ″ | thermodynamic equilibrium |
63 | ″ | schema:name | Deformation-induced nanocrystal formation in shear bands of amorphous alloys |
64 | ″ | schema:pagination | 541-543 |
65 | ″ | schema:productId | N8e8a5f05c7f1468f8d1e1a0e3a0366fd |
66 | ″ | ″ | N9446df8a93c049698caaa64d0a3e81dc |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009820657 |
68 | ″ | ″ | https://doi.org/10.1038/367541a0 |
69 | ″ | schema:sdDatePublished | 2022-06-01T22:02 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N8e1fe49826754be491ed2a0a9a087d5d |
72 | ″ | schema:url | https://doi.org/10.1038/367541a0 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | articles |
75 | ″ | rdf:type | schema:ScholarlyArticle |
76 | N70de4085979f469fabca81d33a331faf | rdf:first | sg:person.015100642757.27 |
77 | ″ | rdf:rest | N94adafa16ce8405d90b0cdd4c8575975 |
78 | N8e1fe49826754be491ed2a0a9a087d5d | schema:name | Springer Nature - SN SciGraph project |
79 | ″ | rdf:type | schema:Organization |
80 | N8e8a5f05c7f1468f8d1e1a0e3a0366fd | schema:name | doi |
81 | ″ | schema:value | 10.1038/367541a0 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N942e08f69c5b435ab45cec414ee9f94e | schema:issueNumber | 6463 |
84 | ″ | rdf:type | schema:PublicationIssue |
85 | N9446df8a93c049698caaa64d0a3e81dc | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1009820657 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N94adafa16ce8405d90b0cdd4c8575975 | rdf:first | sg:person.010252015157.28 |
89 | ″ | rdf:rest | rdf:nil |
90 | N994b123572be4e29bfeb09d7d0797d51 | rdf:first | Ne0371472403140c393f99c8b107c1f41 |
91 | ″ | rdf:rest | N9ef5ddad533f467785f8c1dd873e53ea |
92 | N9ef5ddad533f467785f8c1dd873e53ea | rdf:first | Nf752870fe01c419dbc69161f89514b37 |
93 | ″ | rdf:rest | N70de4085979f469fabca81d33a331faf |
94 | Nac42bd475f9e46d7ab690a3c7644ce49 | schema:volumeNumber | 367 |
95 | ″ | rdf:type | schema:PublicationVolume |
96 | Ne0371472403140c393f99c8b107c1f41 | schema:affiliation | grid-institutes:grid.225262.3 |
97 | ″ | schema:familyName | Chen |
98 | ″ | schema:givenName | H. |
99 | ″ | rdf:type | schema:Person |
100 | Nf752870fe01c419dbc69161f89514b37 | schema:affiliation | grid-institutes:grid.27755.32 |
101 | ″ | schema:familyName | He |
102 | ″ | schema:givenName | Y. |
103 | ″ | rdf:type | schema:Person |
104 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Engineering |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Materials Engineering |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:journal.1018957 | schema:issn | 0028-0836 |
111 | ″ | ″ | 1476-4687 |
112 | ″ | schema:name | Nature |
113 | ″ | schema:publisher | Springer Nature |
114 | ″ | rdf:type | schema:Periodical |
115 | sg:person.010252015157.28 | schema:affiliation | grid-institutes:grid.27755.32 |
116 | ″ | schema:familyName | Poon |
117 | ″ | schema:givenName | S. J. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.015100642757.27 | schema:affiliation | grid-institutes:grid.27755.32 |
121 | ″ | schema:familyName | Shiflet |
122 | ″ | schema:givenName | G. J. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100642757.27 |
124 | ″ | rdf:type | schema:Person |
125 | sg:pub.10.1007/3540104402_10 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009843020 |
126 | ″ | ″ | https://doi.org/10.1007/3540104402_10 |
127 | ″ | rdf:type | schema:CreativeWork |
128 | sg:pub.10.1007/bf00541671 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053417930 |
129 | ″ | ″ | https://doi.org/10.1007/bf00541671 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1038/341183a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040872563 |
132 | ″ | ″ | https://doi.org/10.1038/341183a0 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | grid-institutes:grid.225262.3 | schema:alternateName | Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA |
135 | ″ | schema:name | Center for Advanced Materials, Department of Chemistry, University of Massachusetts, Lowell, One University Avenue, 01854, Lowell, Massachusetts, USA |
136 | ″ | ″ | Department of Materials Science and Engineering |
137 | ″ | rdf:type | schema:Organization |
138 | grid-institutes:grid.27755.32 | schema:alternateName | Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA |
139 | ″ | schema:name | Department of Physics, University of Virginia, 22901, Charlottesville, Virginia, USA |
140 | ″ | rdf:type | schema:Organization |