Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

D. Archer, E. Maier-Reimer

ABSTRACT

DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value. More... »

PAGES

260-263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/367260a0

DOI

http://dx.doi.org/10.1038/367260a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008466145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Larnont-Doherty Earth Observatory of Columbia University, 10964, Palisades, New York, USA", 
            "Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Archer", 
        "givenName": "D.", 
        "id": "sg:person.0732274210.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732274210.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Plank-lnstitut f\u00fcr Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Plank-lnstitut f\u00fcr Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Reimer", 
        "givenName": "E.", 
        "id": "sg:person.014145550405.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/331055a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032834524", 
          "https://doi.org/10.1038/331055a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00208905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015968132", 
          "https://doi.org/10.1007/bf00208905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329408a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011796829", 
          "https://doi.org/10.1038/329408a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/337541a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030243638", 
          "https://doi.org/10.1038/337541a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028855803", 
          "https://doi.org/10.1038/331609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335529a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032545635", 
          "https://doi.org/10.1038/335529a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00441228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004870028", 
          "https://doi.org/10.1007/bf00441228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357488a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034674580", 
          "https://doi.org/10.1038/357488a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363149a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020477759", 
          "https://doi.org/10.1038/363149a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2\u20134. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/367260a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6460", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "keywords": [
      "atmospheric CO2 concentration", 
      "CO2 concentration", 
      "organic carbon", 
      "calcium carbonate", 
      "atmospheric carbon dioxide concentration", 
      "calcite deposition rate", 
      "timescales of thousands", 
      "removal of carbonates", 
      "glacial values", 
      "calcite preservation", 
      "ocean circulation", 
      "carbon dioxide concentration", 
      "sedimentary processes", 
      "terrestrial weathering", 
      "sea floor", 
      "last glaciation", 
      "sediment chemistry", 
      "carbon cycling", 
      "steady-state balance", 
      "Ocean", 
      "carbonate", 
      "dioxide concentration", 
      "supply rate", 
      "deposition rate", 
      "dissolution", 
      "carbon", 
      "glaciation", 
      "weathering", 
      "sediments", 
      "burial", 
      "timescales", 
      "circulation", 
      "floor", 
      "concentration", 
      "cycling", 
      "changes", 
      "chemistry", 
      "relative rates", 
      "preservation", 
      "value1", 
      "model", 
      "balance", 
      "thousands", 
      "rate", 
      "alterations", 
      "process", 
      "years", 
      "pH", 
      "decrease", 
      "values", 
      "relationship", 
      "degradation", 
      "removal", 
      "mechanism", 
      "effect", 
      "Holocene pre-industrial value1", 
      "pre-industrial value1", 
      "oceanic processes2", 
      "processes2", 
      "sediments2\u20134", 
      "deep-sea sedimentary calcite preservation", 
      "sedimentary calcite preservation"
    ], 
    "name": "Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration", 
    "pagination": "260-263", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008466145"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/367260a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/367260a0", 
      "https://app.dimensions.ai/details/publication/pub.1008466145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_227.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/367260a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/367260a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/367260a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/367260a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/367260a0'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      98 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/367260a0 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 anzsrc-for:0405
4 schema:author N7c984b39936641c0818f615f7b916c6e
5 schema:citation sg:pub.10.1007/bf00208905
6 sg:pub.10.1007/bf00441228
7 sg:pub.10.1038/329408a0
8 sg:pub.10.1038/331055a0
9 sg:pub.10.1038/331609a0
10 sg:pub.10.1038/335529a0
11 sg:pub.10.1038/337541a0
12 sg:pub.10.1038/357488a0
13 sg:pub.10.1038/363149a0
14 schema:datePublished 1994-01
15 schema:datePublishedReg 1994-01-01
16 schema:description DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N4161ee1ca9234f0baaa21af82f654adc
21 N5a38cd84e0414e1780df08c5ec3c2001
22 sg:journal.1018957
23 schema:keywords CO2 concentration
24 Holocene pre-industrial value1
25 Ocean
26 alterations
27 atmospheric CO2 concentration
28 atmospheric carbon dioxide concentration
29 balance
30 burial
31 calcite deposition rate
32 calcite preservation
33 calcium carbonate
34 carbon
35 carbon cycling
36 carbon dioxide concentration
37 carbonate
38 changes
39 chemistry
40 circulation
41 concentration
42 cycling
43 decrease
44 deep-sea sedimentary calcite preservation
45 degradation
46 deposition rate
47 dioxide concentration
48 dissolution
49 effect
50 floor
51 glacial values
52 glaciation
53 last glaciation
54 mechanism
55 model
56 ocean circulation
57 oceanic processes2
58 organic carbon
59 pH
60 pre-industrial value1
61 preservation
62 process
63 processes2
64 rate
65 relationship
66 relative rates
67 removal
68 removal of carbonates
69 sea floor
70 sediment chemistry
71 sedimentary calcite preservation
72 sedimentary processes
73 sediments
74 sediments2–4
75 steady-state balance
76 supply rate
77 terrestrial weathering
78 thousands
79 timescales
80 timescales of thousands
81 value1
82 values
83 weathering
84 years
85 schema:name Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration
86 schema:pagination 260-263
87 schema:productId N27fb046a14ca439f8931f2995b673c88
88 Ndced877fb899403284c177dc03ee50f7
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008466145
90 https://doi.org/10.1038/367260a0
91 schema:sdDatePublished 2022-01-01T18:05
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nce0a0f115778444fb930354c49a98715
94 schema:url https://doi.org/10.1038/367260a0
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N27fb046a14ca439f8931f2995b673c88 schema:name doi
99 schema:value 10.1038/367260a0
100 rdf:type schema:PropertyValue
101 N4161ee1ca9234f0baaa21af82f654adc schema:issueNumber 6460
102 rdf:type schema:PublicationIssue
103 N5a38cd84e0414e1780df08c5ec3c2001 schema:volumeNumber 367
104 rdf:type schema:PublicationVolume
105 N7c984b39936641c0818f615f7b916c6e rdf:first sg:person.0732274210.90
106 rdf:rest N92f5d038182645dd8679f3a5655bbdab
107 N92f5d038182645dd8679f3a5655bbdab rdf:first sg:person.014145550405.00
108 rdf:rest rdf:nil
109 Nce0a0f115778444fb930354c49a98715 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Ndced877fb899403284c177dc03ee50f7 schema:name dimensions_id
112 schema:value pub.1008466145
113 rdf:type schema:PropertyValue
114 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
115 schema:name Earth Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
118 schema:name Geochemistry
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
121 schema:name Oceanography
122 rdf:type schema:DefinedTerm
123 sg:journal.1018957 schema:issn 0028-0836
124 1476-4687
125 schema:name Nature
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.014145550405.00 schema:affiliation grid-institutes:None
129 schema:familyName Maier-Reimer
130 schema:givenName E.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00
132 rdf:type schema:Person
133 sg:person.0732274210.90 schema:affiliation grid-institutes:grid.170205.1
134 schema:familyName Archer
135 schema:givenName D.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732274210.90
137 rdf:type schema:Person
138 sg:pub.10.1007/bf00208905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015968132
139 https://doi.org/10.1007/bf00208905
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf00441228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004870028
142 https://doi.org/10.1007/bf00441228
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/329408a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011796829
145 https://doi.org/10.1038/329408a0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/331055a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032834524
148 https://doi.org/10.1038/331055a0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/331609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028855803
151 https://doi.org/10.1038/331609a0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/335529a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032545635
154 https://doi.org/10.1038/335529a0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/337541a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030243638
157 https://doi.org/10.1038/337541a0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/357488a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034674580
160 https://doi.org/10.1038/357488a0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/363149a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020477759
163 https://doi.org/10.1038/363149a0
164 rdf:type schema:CreativeWork
165 grid-institutes:None schema:alternateName Max-Plank-lnstitut für Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany
166 schema:name Max-Plank-lnstitut für Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany
167 rdf:type schema:Organization
168 grid-institutes:grid.170205.1 schema:alternateName Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA
169 schema:name Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA
170 Larnont-Doherty Earth Observatory of Columbia University, 10964, Palisades, New York, USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...