Ontology type: schema:ScholarlyArticle
1994-01
AUTHORS ABSTRACTDURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value. More... »
PAGES260-263
http://scigraph.springernature.com/pub.10.1038/367260a0
DOIhttp://dx.doi.org/10.1038/367260a0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008466145
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geochemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA",
"id": "http://www.grid.ac/institutes/grid.170205.1",
"name": [
"Larnont-Doherty Earth Observatory of Columbia University, 10964, Palisades, New York, USA",
"Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA"
],
"type": "Organization"
},
"familyName": "Archer",
"givenName": "D.",
"id": "sg:person.0732274210.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732274210.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Plank-lnstitut f\u00fcr Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Max-Plank-lnstitut f\u00fcr Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Maier-Reimer",
"givenName": "E.",
"id": "sg:person.014145550405.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00441228",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004870028",
"https://doi.org/10.1007/bf00441228"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/363149a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020477759",
"https://doi.org/10.1038/363149a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00208905",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015968132",
"https://doi.org/10.1007/bf00208905"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/357488a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034674580",
"https://doi.org/10.1038/357488a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/331055a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032834524",
"https://doi.org/10.1038/331055a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/337541a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030243638",
"https://doi.org/10.1038/337541a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/331609a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028855803",
"https://doi.org/10.1038/331609a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/329408a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011796829",
"https://doi.org/10.1038/329408a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/335529a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032545635",
"https://doi.org/10.1038/335529a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-01",
"datePublishedReg": "1994-01-01",
"description": "DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2\u20134. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.",
"genre": "article",
"id": "sg:pub.10.1038/367260a0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018957",
"issn": [
"0028-0836",
"1476-4687"
],
"name": "Nature",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6460",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "367"
}
],
"keywords": [
"atmospheric CO2 concentration",
"CO2 concentration",
"organic carbon",
"calcium carbonate",
"atmospheric carbon dioxide concentration",
"calcite deposition rate",
"timescales of thousands",
"removal of carbonates",
"glacial values",
"calcite preservation",
"ocean circulation",
"carbon dioxide concentration",
"sedimentary processes",
"terrestrial weathering",
"sea floor",
"last glaciation",
"sediment chemistry",
"carbon cycling",
"steady-state balance",
"Ocean",
"carbonate",
"dioxide concentration",
"supply rate",
"deposition rate",
"dissolution",
"carbon",
"glaciation",
"weathering",
"sediments",
"burial",
"timescales",
"circulation",
"floor",
"concentration",
"cycling",
"changes",
"chemistry",
"relative rates",
"preservation",
"value1",
"model",
"balance",
"thousands",
"rate",
"alterations",
"process",
"years",
"pH",
"decrease",
"values",
"relationship",
"degradation",
"removal",
"mechanism",
"effect"
],
"name": "Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration",
"pagination": "260-263",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008466145"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/367260a0"
]
}
],
"sameAs": [
"https://doi.org/10.1038/367260a0",
"https://app.dimensions.ai/details/publication/pub.1008466145"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_227.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/367260a0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/367260a0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/367260a0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/367260a0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/367260a0'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
22 PREDICATES
91 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/367260a0 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0402 |
3 | ″ | ″ | anzsrc-for:0405 |
4 | ″ | schema:author | N8692d540a44a4ecc96d80fdf800315ab |
5 | ″ | schema:citation | sg:pub.10.1007/bf00208905 |
6 | ″ | ″ | sg:pub.10.1007/bf00441228 |
7 | ″ | ″ | sg:pub.10.1038/329408a0 |
8 | ″ | ″ | sg:pub.10.1038/331055a0 |
9 | ″ | ″ | sg:pub.10.1038/331609a0 |
10 | ″ | ″ | sg:pub.10.1038/335529a0 |
11 | ″ | ″ | sg:pub.10.1038/337541a0 |
12 | ″ | ″ | sg:pub.10.1038/357488a0 |
13 | ″ | ″ | sg:pub.10.1038/363149a0 |
14 | ″ | schema:datePublished | 1994-01 |
15 | ″ | schema:datePublishedReg | 1994-01-01 |
16 | ″ | schema:description | DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | N847e839dcdfa4ac4a8de7b479da63a55 |
21 | ″ | ″ | Nd1aaa8ff570a453b8d5a4480f2a58143 |
22 | ″ | ″ | sg:journal.1018957 |
23 | ″ | schema:keywords | CO2 concentration |
24 | ″ | ″ | Ocean |
25 | ″ | ″ | alterations |
26 | ″ | ″ | atmospheric CO2 concentration |
27 | ″ | ″ | atmospheric carbon dioxide concentration |
28 | ″ | ″ | balance |
29 | ″ | ″ | burial |
30 | ″ | ″ | calcite deposition rate |
31 | ″ | ″ | calcite preservation |
32 | ″ | ″ | calcium carbonate |
33 | ″ | ″ | carbon |
34 | ″ | ″ | carbon cycling |
35 | ″ | ″ | carbon dioxide concentration |
36 | ″ | ″ | carbonate |
37 | ″ | ″ | changes |
38 | ″ | ″ | chemistry |
39 | ″ | ″ | circulation |
40 | ″ | ″ | concentration |
41 | ″ | ″ | cycling |
42 | ″ | ″ | decrease |
43 | ″ | ″ | degradation |
44 | ″ | ″ | deposition rate |
45 | ″ | ″ | dioxide concentration |
46 | ″ | ″ | dissolution |
47 | ″ | ″ | effect |
48 | ″ | ″ | floor |
49 | ″ | ″ | glacial values |
50 | ″ | ″ | glaciation |
51 | ″ | ″ | last glaciation |
52 | ″ | ″ | mechanism |
53 | ″ | ″ | model |
54 | ″ | ″ | ocean circulation |
55 | ″ | ″ | organic carbon |
56 | ″ | ″ | pH |
57 | ″ | ″ | preservation |
58 | ″ | ″ | process |
59 | ″ | ″ | rate |
60 | ″ | ″ | relationship |
61 | ″ | ″ | relative rates |
62 | ″ | ″ | removal |
63 | ″ | ″ | removal of carbonates |
64 | ″ | ″ | sea floor |
65 | ″ | ″ | sediment chemistry |
66 | ″ | ″ | sedimentary processes |
67 | ″ | ″ | sediments |
68 | ″ | ″ | steady-state balance |
69 | ″ | ″ | supply rate |
70 | ″ | ″ | terrestrial weathering |
71 | ″ | ″ | thousands |
72 | ″ | ″ | timescales |
73 | ″ | ″ | timescales of thousands |
74 | ″ | ″ | value1 |
75 | ″ | ″ | values |
76 | ″ | ″ | weathering |
77 | ″ | ″ | years |
78 | ″ | schema:name | Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration |
79 | ″ | schema:pagination | 260-263 |
80 | ″ | schema:productId | N3c156db9d72142599338831fe9fbb95d |
81 | ″ | ″ | Nae337cfdbce546c29a2f0dfa0e6933ca |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008466145 |
83 | ″ | ″ | https://doi.org/10.1038/367260a0 |
84 | ″ | schema:sdDatePublished | 2022-05-20T07:19 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | Nbd55de6efea94072979726679c287825 |
87 | ″ | schema:url | https://doi.org/10.1038/367260a0 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N3c156db9d72142599338831fe9fbb95d | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1008466145 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N847e839dcdfa4ac4a8de7b479da63a55 | schema:volumeNumber | 367 |
95 | ″ | rdf:type | schema:PublicationVolume |
96 | N8692d540a44a4ecc96d80fdf800315ab | rdf:first | sg:person.0732274210.90 |
97 | ″ | rdf:rest | Nd28f1d5294bf4356bf73dbe4bc95cde4 |
98 | Nae337cfdbce546c29a2f0dfa0e6933ca | schema:name | doi |
99 | ″ | schema:value | 10.1038/367260a0 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nbd55de6efea94072979726679c287825 | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | Nd1aaa8ff570a453b8d5a4480f2a58143 | schema:issueNumber | 6460 |
104 | ″ | rdf:type | schema:PublicationIssue |
105 | Nd28f1d5294bf4356bf73dbe4bc95cde4 | rdf:first | sg:person.014145550405.00 |
106 | ″ | rdf:rest | rdf:nil |
107 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Earth Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0402 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Geochemistry |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Oceanography |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1018957 | schema:issn | 0028-0836 |
117 | ″ | ″ | 1476-4687 |
118 | ″ | schema:name | Nature |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.014145550405.00 | schema:affiliation | grid-institutes:None |
122 | ″ | schema:familyName | Maier-Reimer |
123 | ″ | schema:givenName | E. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.0732274210.90 | schema:affiliation | grid-institutes:grid.170205.1 |
127 | ″ | schema:familyName | Archer |
128 | ″ | schema:givenName | D. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732274210.90 |
130 | ″ | rdf:type | schema:Person |
131 | sg:pub.10.1007/bf00208905 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015968132 |
132 | ″ | ″ | https://doi.org/10.1007/bf00208905 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | sg:pub.10.1007/bf00441228 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004870028 |
135 | ″ | ″ | https://doi.org/10.1007/bf00441228 |
136 | ″ | rdf:type | schema:CreativeWork |
137 | sg:pub.10.1038/329408a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011796829 |
138 | ″ | ″ | https://doi.org/10.1038/329408a0 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1038/331055a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032834524 |
141 | ″ | ″ | https://doi.org/10.1038/331055a0 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | sg:pub.10.1038/331609a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028855803 |
144 | ″ | ″ | https://doi.org/10.1038/331609a0 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1038/335529a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032545635 |
147 | ″ | ″ | https://doi.org/10.1038/335529a0 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1038/337541a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030243638 |
150 | ″ | ″ | https://doi.org/10.1038/337541a0 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1038/357488a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034674580 |
153 | ″ | ″ | https://doi.org/10.1038/357488a0 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1038/363149a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020477759 |
156 | ″ | ″ | https://doi.org/10.1038/363149a0 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | grid-institutes:None | schema:alternateName | Max-Plank-lnstitut für Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany |
159 | ″ | schema:name | Max-Plank-lnstitut für Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany |
160 | ″ | rdf:type | schema:Organization |
161 | grid-institutes:grid.170205.1 | schema:alternateName | Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA |
162 | ″ | schema:name | Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA |
163 | ″ | ″ | Larnont-Doherty Earth Observatory of Columbia University, 10964, Palisades, New York, USA |
164 | ″ | rdf:type | schema:Organization |