Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

D. Archer, E. Maier-Reimer

ABSTRACT

DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value. More... »

PAGES

260-263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/367260a0

DOI

http://dx.doi.org/10.1038/367260a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008466145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Larnont-Doherty Earth Observatory of Columbia University, 10964, Palisades, New York, USA", 
            "Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Archer", 
        "givenName": "D.", 
        "id": "sg:person.0732274210.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732274210.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Plank-lnstitut f\u00fcr Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max-Plank-lnstitut f\u00fcr Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Reimer", 
        "givenName": "E.", 
        "id": "sg:person.014145550405.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00441228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004870028", 
          "https://doi.org/10.1007/bf00441228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363149a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020477759", 
          "https://doi.org/10.1038/363149a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00208905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015968132", 
          "https://doi.org/10.1007/bf00208905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357488a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034674580", 
          "https://doi.org/10.1038/357488a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331055a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032834524", 
          "https://doi.org/10.1038/331055a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/337541a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030243638", 
          "https://doi.org/10.1038/337541a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028855803", 
          "https://doi.org/10.1038/331609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329408a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011796829", 
          "https://doi.org/10.1038/329408a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335529a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032545635", 
          "https://doi.org/10.1038/335529a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2\u20134. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/367260a0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6460", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "keywords": [
      "atmospheric CO2 concentration", 
      "CO2 concentration", 
      "organic carbon", 
      "calcium carbonate", 
      "atmospheric carbon dioxide concentration", 
      "calcite deposition rate", 
      "timescales of thousands", 
      "removal of carbonates", 
      "glacial values", 
      "calcite preservation", 
      "ocean circulation", 
      "carbon dioxide concentration", 
      "sedimentary processes", 
      "terrestrial weathering", 
      "sea floor", 
      "last glaciation", 
      "sediment chemistry", 
      "carbon cycling", 
      "steady-state balance", 
      "Ocean", 
      "carbonate", 
      "dioxide concentration", 
      "supply rate", 
      "deposition rate", 
      "dissolution", 
      "carbon", 
      "glaciation", 
      "weathering", 
      "sediments", 
      "burial", 
      "timescales", 
      "circulation", 
      "floor", 
      "concentration", 
      "cycling", 
      "changes", 
      "chemistry", 
      "relative rates", 
      "preservation", 
      "value1", 
      "model", 
      "balance", 
      "thousands", 
      "rate", 
      "alterations", 
      "process", 
      "years", 
      "pH", 
      "decrease", 
      "values", 
      "relationship", 
      "degradation", 
      "removal", 
      "mechanism", 
      "effect"
    ], 
    "name": "Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration", 
    "pagination": "260-263", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008466145"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/367260a0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/367260a0", 
      "https://app.dimensions.ai/details/publication/pub.1008466145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_227.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/367260a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/367260a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/367260a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/367260a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/367260a0'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      91 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/367260a0 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 anzsrc-for:0405
4 schema:author N8692d540a44a4ecc96d80fdf800315ab
5 schema:citation sg:pub.10.1007/bf00208905
6 sg:pub.10.1007/bf00441228
7 sg:pub.10.1038/329408a0
8 sg:pub.10.1038/331055a0
9 sg:pub.10.1038/331609a0
10 sg:pub.10.1038/335529a0
11 sg:pub.10.1038/337541a0
12 sg:pub.10.1038/357488a0
13 sg:pub.10.1038/363149a0
14 schema:datePublished 1994-01
15 schema:datePublishedReg 1994-01-01
16 schema:description DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2–4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N847e839dcdfa4ac4a8de7b479da63a55
21 Nd1aaa8ff570a453b8d5a4480f2a58143
22 sg:journal.1018957
23 schema:keywords CO2 concentration
24 Ocean
25 alterations
26 atmospheric CO2 concentration
27 atmospheric carbon dioxide concentration
28 balance
29 burial
30 calcite deposition rate
31 calcite preservation
32 calcium carbonate
33 carbon
34 carbon cycling
35 carbon dioxide concentration
36 carbonate
37 changes
38 chemistry
39 circulation
40 concentration
41 cycling
42 decrease
43 degradation
44 deposition rate
45 dioxide concentration
46 dissolution
47 effect
48 floor
49 glacial values
50 glaciation
51 last glaciation
52 mechanism
53 model
54 ocean circulation
55 organic carbon
56 pH
57 preservation
58 process
59 rate
60 relationship
61 relative rates
62 removal
63 removal of carbonates
64 sea floor
65 sediment chemistry
66 sedimentary processes
67 sediments
68 steady-state balance
69 supply rate
70 terrestrial weathering
71 thousands
72 timescales
73 timescales of thousands
74 value1
75 values
76 weathering
77 years
78 schema:name Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration
79 schema:pagination 260-263
80 schema:productId N3c156db9d72142599338831fe9fbb95d
81 Nae337cfdbce546c29a2f0dfa0e6933ca
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008466145
83 https://doi.org/10.1038/367260a0
84 schema:sdDatePublished 2022-05-20T07:19
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nbd55de6efea94072979726679c287825
87 schema:url https://doi.org/10.1038/367260a0
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N3c156db9d72142599338831fe9fbb95d schema:name dimensions_id
92 schema:value pub.1008466145
93 rdf:type schema:PropertyValue
94 N847e839dcdfa4ac4a8de7b479da63a55 schema:volumeNumber 367
95 rdf:type schema:PublicationVolume
96 N8692d540a44a4ecc96d80fdf800315ab rdf:first sg:person.0732274210.90
97 rdf:rest Nd28f1d5294bf4356bf73dbe4bc95cde4
98 Nae337cfdbce546c29a2f0dfa0e6933ca schema:name doi
99 schema:value 10.1038/367260a0
100 rdf:type schema:PropertyValue
101 Nbd55de6efea94072979726679c287825 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nd1aaa8ff570a453b8d5a4480f2a58143 schema:issueNumber 6460
104 rdf:type schema:PublicationIssue
105 Nd28f1d5294bf4356bf73dbe4bc95cde4 rdf:first sg:person.014145550405.00
106 rdf:rest rdf:nil
107 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
108 schema:name Earth Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
111 schema:name Geochemistry
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
114 schema:name Oceanography
115 rdf:type schema:DefinedTerm
116 sg:journal.1018957 schema:issn 0028-0836
117 1476-4687
118 schema:name Nature
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.014145550405.00 schema:affiliation grid-institutes:None
122 schema:familyName Maier-Reimer
123 schema:givenName E.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00
125 rdf:type schema:Person
126 sg:person.0732274210.90 schema:affiliation grid-institutes:grid.170205.1
127 schema:familyName Archer
128 schema:givenName D.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732274210.90
130 rdf:type schema:Person
131 sg:pub.10.1007/bf00208905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015968132
132 https://doi.org/10.1007/bf00208905
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf00441228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004870028
135 https://doi.org/10.1007/bf00441228
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/329408a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011796829
138 https://doi.org/10.1038/329408a0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/331055a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032834524
141 https://doi.org/10.1038/331055a0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/331609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028855803
144 https://doi.org/10.1038/331609a0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/335529a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032545635
147 https://doi.org/10.1038/335529a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/337541a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030243638
150 https://doi.org/10.1038/337541a0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/357488a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034674580
153 https://doi.org/10.1038/357488a0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/363149a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020477759
156 https://doi.org/10.1038/363149a0
157 rdf:type schema:CreativeWork
158 grid-institutes:None schema:alternateName Max-Plank-lnstitut für Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany
159 schema:name Max-Plank-lnstitut für Meteorologie, Bundesstrasse 7, D-200054, Hamburg, Germany
160 rdf:type schema:Organization
161 grid-institutes:grid.170205.1 schema:alternateName Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA
162 schema:name Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, 60637, Chicago, Illinois, USA
163 Larnont-Doherty Earth Observatory of Columbia University, 10964, Palisades, New York, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...