Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-11

AUTHORS

A. F. Ruppert, Cyrus R. Safinya, Keng S. Liang, Kenneth J. Rothschild, Yi Shen

ABSTRACT

TWO-DIMENSIONAL assemblies of membrane proteins (see ref. 1, for example) such as bacteriorhodopsin are of current interest because of their potential application in technological areas as diverse as molecular electronics and optical switching2, molecular sieves3,4 and the lithographic fabrication of nanometre-scale patterns5,6. Here we report that bacteriorhodopsin7–9 can retain its folded native structure to temperatures as high as 140 °C when incorporated in multilayer structures of self-assembled, ordered films. Synchrotron X-ray scattering reveals that, under hydrated conditions, the two-dimensional lattice in multilayer films exhibits a reversible solid–liquid transition at about 69 °C, followed by irreversible denaturing of the bacteriorhodopsin at about 90 °C. But in dry films the melting transition and denaturation are suppressed up to 140 °C. These results suggest that it may be feasible to use multilayer assemblies of functional proteins and enzymes10,11 in high-temperature applications. More... »

PAGES

48

Journal

TITLE

Nature

ISSUE

6450

VOLUME

366

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/366048a0

DOI

http://dx.doi.org/10.1038/366048a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045414504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ruppert", 
        "givenName": "A. F.", 
        "id": "sg:person.07650441456.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07650441456.13"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Safinya", 
        "givenName": "Cyrus R.", 
        "id": "sg:person.01060305035.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060305035.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Liang", 
        "givenName": "Keng S.", 
        "id": "sg:person.0653247063.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653247063.24"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rothschild", 
        "givenName": "Kenneth J.", 
        "id": "sg:person.0730651651.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730651651.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Shen", 
        "givenName": "Yi", 
        "id": "sg:person.010043322451.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043322451.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00762349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002484695", 
          "https://doi.org/10.1007/bf00762349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(89)80774-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008716823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/257028a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015235004", 
          "https://doi.org/10.1038/257028a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(74)31072-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018547969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80271-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018782414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio233149a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031160868", 
          "https://doi.org/10.1038/newbio233149a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio233149a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031160868", 
          "https://doi.org/10.1038/newbio233149a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio233149a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031160868", 
          "https://doi.org/10.1038/newbio233149a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio233152a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043991667", 
          "https://doi.org/10.1038/newbio233152a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio233152a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043991667", 
          "https://doi.org/10.1038/newbio233152a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio233152a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043991667", 
          "https://doi.org/10.1038/newbio233152a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(75)90212-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045356938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/301125a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053337334", 
          "https://doi.org/10.1038/301125a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00060a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055159229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00152a020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055162838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00162a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055163281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00446a037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055176570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00614a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055182735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.102685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057650261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.457764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058035776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.257.5070.642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062544394"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-11", 
    "datePublishedReg": "1993-11-01", 
    "description": "TWO-DIMENSIONAL assemblies of membrane proteins (see ref. 1, for example) such as bacteriorhodopsin are of current interest because of their potential application in technological areas as diverse as molecular electronics and optical switching2, molecular sieves3,4 and the lithographic fabrication of nanometre-scale patterns5,6. Here we report that bacteriorhodopsin7\u20139 can retain its folded native structure to temperatures as high as 140 \u00b0C when incorporated in multilayer structures of self-assembled, ordered films. Synchrotron X-ray scattering reveals that, under hydrated conditions, the two-dimensional lattice in multilayer films exhibits a reversible solid\u2013liquid transition at about 69 \u00b0C, followed by irreversible denaturing of the bacteriorhodopsin at about 90 \u00b0C. But in dry films the melting transition and denaturation are suppressed up to 140 \u00b0C. These results suggest that it may be feasible to use multilayer assemblies of functional proteins and enzymes10,11 in high-temperature applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/366048a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6450", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "366"
      }
    ], 
    "name": "Stabilization of the membrane protein bacteriorhodopsin to 140 \u00b0C in two-dimensional films", 
    "pagination": "48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d854679dfc026683c36f41b98343b425bf191f0581fd37924fca4295b0c0d3e1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/366048a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045414504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/366048a0", 
      "https://app.dimensions.ai/details/publication/pub.1045414504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/366048a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/366048a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/366048a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/366048a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/366048a0'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/366048a0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N3afee2cb6ebe4a30a76fd0c077112f85
4 schema:citation sg:pub.10.1007/bf00762349
5 sg:pub.10.1038/257028a0
6 sg:pub.10.1038/301125a0
7 sg:pub.10.1038/newbio233149a0
8 sg:pub.10.1038/newbio233152a0
9 https://doi.org/10.1016/0014-5793(89)80774-4
10 https://doi.org/10.1016/0022-2836(75)90212-0
11 https://doi.org/10.1016/0076-6879(74)31072-5
12 https://doi.org/10.1016/s0022-2836(05)80271-2
13 https://doi.org/10.1021/bi00060a019
14 https://doi.org/10.1021/bi00152a020
15 https://doi.org/10.1021/bi00162a010
16 https://doi.org/10.1021/bi00446a037
17 https://doi.org/10.1021/bi00614a017
18 https://doi.org/10.1063/1.102685
19 https://doi.org/10.1063/1.457764
20 https://doi.org/10.1103/physrevlett.57.2718
21 https://doi.org/10.1103/physrevlett.62.1134
22 https://doi.org/10.1126/science.257.5070.642
23 schema:datePublished 1993-11
24 schema:datePublishedReg 1993-11-01
25 schema:description TWO-DIMENSIONAL assemblies of membrane proteins (see ref. 1, for example) such as bacteriorhodopsin are of current interest because of their potential application in technological areas as diverse as molecular electronics and optical switching2, molecular sieves3,4 and the lithographic fabrication of nanometre-scale patterns5,6. Here we report that bacteriorhodopsin7–9 can retain its folded native structure to temperatures as high as 140 °C when incorporated in multilayer structures of self-assembled, ordered films. Synchrotron X-ray scattering reveals that, under hydrated conditions, the two-dimensional lattice in multilayer films exhibits a reversible solid–liquid transition at about 69 °C, followed by irreversible denaturing of the bacteriorhodopsin at about 90 °C. But in dry films the melting transition and denaturation are suppressed up to 140 °C. These results suggest that it may be feasible to use multilayer assemblies of functional proteins and enzymes10,11 in high-temperature applications.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N87e5bf36d4204642b7768a3cebb5f24e
30 Ndcc3badeeed240fc8bf20c18cda54c95
31 sg:journal.1018957
32 schema:name Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films
33 schema:pagination 48
34 schema:productId Nafbaf7d5d9e442c59531f0c640660832
35 Nf9bd2061e4604b19b8f00751deefdc1c
36 Nf9df507a8037436a99cacde7b05c90b3
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414504
38 https://doi.org/10.1038/366048a0
39 schema:sdDatePublished 2019-04-10T18:08
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N38a13f1218eb4235a435ac50d14f78ee
42 schema:url https://www.nature.com/articles/366048a0
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N38a13f1218eb4235a435ac50d14f78ee schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N3afee2cb6ebe4a30a76fd0c077112f85 rdf:first sg:person.07650441456.13
49 rdf:rest N54d1fdd38d90459b9871478f4a800506
50 N54d1fdd38d90459b9871478f4a800506 rdf:first sg:person.01060305035.31
51 rdf:rest Nf5e7d0860c9f4fed86791d94f0399d24
52 N58111ad83fc14e2d9439e341f8876c52 rdf:first sg:person.010043322451.38
53 rdf:rest rdf:nil
54 N6047ee40d766406b977c4a045f5e2b8a rdf:first sg:person.0730651651.19
55 rdf:rest N58111ad83fc14e2d9439e341f8876c52
56 N87e5bf36d4204642b7768a3cebb5f24e schema:volumeNumber 366
57 rdf:type schema:PublicationVolume
58 Nafbaf7d5d9e442c59531f0c640660832 schema:name doi
59 schema:value 10.1038/366048a0
60 rdf:type schema:PropertyValue
61 Ndcc3badeeed240fc8bf20c18cda54c95 schema:issueNumber 6450
62 rdf:type schema:PublicationIssue
63 Nf5e7d0860c9f4fed86791d94f0399d24 rdf:first sg:person.0653247063.24
64 rdf:rest N6047ee40d766406b977c4a045f5e2b8a
65 Nf9bd2061e4604b19b8f00751deefdc1c schema:name dimensions_id
66 schema:value pub.1045414504
67 rdf:type schema:PropertyValue
68 Nf9df507a8037436a99cacde7b05c90b3 schema:name readcube_id
69 schema:value d854679dfc026683c36f41b98343b425bf191f0581fd37924fca4295b0c0d3e1
70 rdf:type schema:PropertyValue
71 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
72 schema:name Chemical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Chemistry (incl. Structural)
76 rdf:type schema:DefinedTerm
77 sg:journal.1018957 schema:issn 0090-0028
78 1476-4687
79 schema:name Nature
80 rdf:type schema:Periodical
81 sg:person.010043322451.38 schema:familyName Shen
82 schema:givenName Yi
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043322451.38
84 rdf:type schema:Person
85 sg:person.01060305035.31 schema:familyName Safinya
86 schema:givenName Cyrus R.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060305035.31
88 rdf:type schema:Person
89 sg:person.0653247063.24 schema:familyName Liang
90 schema:givenName Keng S.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653247063.24
92 rdf:type schema:Person
93 sg:person.0730651651.19 schema:familyName Rothschild
94 schema:givenName Kenneth J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730651651.19
96 rdf:type schema:Person
97 sg:person.07650441456.13 schema:familyName Ruppert
98 schema:givenName A. F.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07650441456.13
100 rdf:type schema:Person
101 sg:pub.10.1007/bf00762349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002484695
102 https://doi.org/10.1007/bf00762349
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/257028a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015235004
105 https://doi.org/10.1038/257028a0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/301125a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053337334
108 https://doi.org/10.1038/301125a0
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/newbio233149a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031160868
111 https://doi.org/10.1038/newbio233149a0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/newbio233152a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043991667
114 https://doi.org/10.1038/newbio233152a0
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0014-5793(89)80774-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008716823
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0022-2836(75)90212-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045356938
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0076-6879(74)31072-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018547969
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0022-2836(05)80271-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018782414
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/bi00060a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159229
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/bi00152a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055162838
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/bi00162a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055163281
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/bi00446a037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055176570
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/bi00614a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055182735
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.102685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057650261
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.457764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035776
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.57.2718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794206
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.62.1134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798380
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.257.5070.642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062544394
143 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...