Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

M Strand, T A Prolla, R M Liskay, T D Petes

ABSTRACT

The genomes of all eukaryotes contain tracts of DNA in which a single base or a small number of bases is repeated. Expansions of such tracts have been associated with several human disorders including the fragile X syndrome. In addition, simple repeats are unstable in certain forms of colorectal cancer, suggesting a defect in DNA replication or repair. We show here that mutations in any three yeast genes involved in DNA mismatch repair (PMS1, MLH1 and MSH2) lead to 100- to 700-fold increases in tract instability, whereas mutations that eliminate the proof-reading function of DNA polymerases have little effect. The meiotic stability of the tracts is similar to the mitotic stability. These results suggest that tract instability is associated with DNA polymerases slipping during replication, and that some types of colorectal cancer may reflect mutations in genes involved in DNA mismatch repair. More... »

PAGES

274-276

Journal

TITLE

Nature

ISSUE

6443

VOLUME

365

Related Patents

  • Antibodies And Methods For Generating Genetically Altered Antibodies With High Affinity
  • Methods For Generating Genetically Altered Antibody Producing Cell Lines With Improved Antibody Characteristics
  • Method For Generating Hypermutable Organisms
  • Mammalian Dna Mismatch Repair Genes Mlh1 And Pms1
  • Diagnostic Method Employing Msh2 Protein
  • Compositions And Methods Relating To Dna Mismatch Repair Genes
  • Method For Generating Genetically Altered Antigens
  • Chemical Inhibitors Of Mismatch Repair
  • A Method For Detection Of Alterations In The Dna Mismatch Repair Pathway
  • Method For Generating Hypermutable Organisms
  • Methods For Generating Genetically Altered Antibody-Producing Cell Lines With Improved Antibody Characteristics
  • Cancer Diagnosis And Therapy Based On Mutations In Tgf-Β Receptors
  • Polymerase Delta Mutations In Colorectal Tumors With Replication Errors
  • Compositions And Methods Relating To Dna Mismatch Repair Genes
  • Method For Generating Hypermutable Organisms
  • Cancer Diagnosis Prognosis And Therapy Based On Mutation Of Receptors For Transforming Growth Factor Β And Homologous Growth Controlling Factors
  • Methods For Generating Hypermutable Yeast
  • Method For Detection Of Alterations In The Dna Mismatch Repair Pathway
  • Human Msh2 Protein
  • Method For Generating Hypermutable Plants
  • Identification Of Neoplasms By Detection Of Genetic Insertions And Deletions
  • Msh2 Disrupted Mice Develop Lymphomas
  • Method For Generating Hypermutable Plants
  • Methods For Generating Hypermutable Yeast
  • A Method For Generating Hypermutable Plants
  • Method Of Detection Of Alterations In Msh5
  • Antibodies And Methods For Generating Genetically Altered Antibodies With Enhanced Effector Function
  • Methods For Obtaining Microbe-Resistant Mammalian Cells From Hypermutable Mammalian Cells
  • Identification Of Neoplasms By Detection Of Genetic Insertions And Deletions
  • Mutator Gene And Hereditary Non-Polyposis Colorectal Cancer
  • Chemical Inhibitors Of Mismatch Repair
  • Human Mutator Gene Hmsh2 And Hereditary Non Polyposis Colorectal Cancer
  • Method For Generating Engineered Cells By Homologously Recombining Segments Having Increased Degeneracy
  • Method For Generating Hypermutable Plants
  • Antibodies And Methods For Generating Genetically Altered Antibodies With High Affinity
  • Method Of Detection Of Alterations In Msh5
  • Diagnostic Method Employing Msh2 Nucleic Acids
  • Genetically Altered Antibody-Producing Cell Lines With Improved Antibody Characteristics
  • Cancer Diagnosis And Therapy Based On Mutations In Tgf-Β Receptors
  • Methods For Generating Hypermutable Microbes
  • Method For Detection Of Alterations In The Dna Mismatch Repair Pathway
  • Methods For Isolating Novel Antimicrobial Agents From Hypermutable Mammalian Cells
  • Compositions And Methods Relating To Dna Mismatch Repair Genes
  • Methods For Generating Hypermutable Yeast
  • Composition And Methods Relating To Dna Mismatch Repair Genes
  • Methods For Generating Hypermutable Microbes
  • Method For Generating Hypermutable Organisms
  • Methods For Generating Hypermutable Yeast
  • Methods For Generating Hypermutable Microbes
  • Compositions And Methods Relating To Dna Mismatch Repair Genes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/365274a0

    DOI

    http://dx.doi.org/10.1038/365274a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019075047

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/8371783


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Repair", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Replication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Directed DNA Polymerase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Heteroduplexes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polydeoxyribonucleotides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Repetitive Sequences, Nucleic Acid", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Biology, University of North Carolina, Chapel Hill 27599-3280."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strand", 
            "givenName": "M", 
            "id": "sg:person.0761314210.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761314210.00"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Prolla", 
            "givenName": "T A", 
            "id": "sg:person.012343334147.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343334147.74"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Liskay", 
            "givenName": "R M", 
            "id": "sg:person.01114005625.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114005625.92"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Petes", 
            "givenName": "T D", 
            "id": "sg:person.01010306571.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010306571.22"
            ], 
            "type": "Person"
          }
        ], 
        "datePublished": "1993-09", 
        "datePublishedReg": "1993-09-01", 
        "description": "The genomes of all eukaryotes contain tracts of DNA in which a single base or a small number of bases is repeated. Expansions of such tracts have been associated with several human disorders including the fragile X syndrome. In addition, simple repeats are unstable in certain forms of colorectal cancer, suggesting a defect in DNA replication or repair. We show here that mutations in any three yeast genes involved in DNA mismatch repair (PMS1, MLH1 and MSH2) lead to 100- to 700-fold increases in tract instability, whereas mutations that eliminate the proof-reading function of DNA polymerases have little effect. The meiotic stability of the tracts is similar to the mitotic stability. These results suggest that tract instability is associated with DNA polymerases slipping during replication, and that some types of colorectal cancer may reflect mutations in genes involved in DNA mismatch repair.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/365274a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6443", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "365"
          }
        ], 
        "name": "Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair", 
        "pagination": "274-276", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5ae314cc1389272c09a170204f493b39de1afeb1499ec168e7fb0c01fc6df11d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "8371783"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/365274a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019075047"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/365274a0", 
          "https://app.dimensions.ai/details/publication/pub.1019075047"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nature/journal/v365/n6443/full/365274a0.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/365274a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/365274a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/365274a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/365274a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      20 PREDICATES      40 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/365274a0 schema:about N3da0d93e695e45c78cb03cf21f21c8da
    2 N3e086d2075e64477a57ad60b43157b2a
    3 N810d64b89c564763b9007c645355d682
    4 N8c77ba7b61924d6f8d2989b79638a9f6
    5 N8fc72a594c644f63bedc75767e139b26
    6 N9451a176662c4799b24cac460e5f50cb
    7 Nc3727110ebe441e3a50adaf538a85077
    8 Nd0f88e878a0a447ea13ba13bc4f59ee3
    9 Nd409259248884f35a2c4a4ff89a2b6b7
    10 Nf3b070a12e4a4b26af05a8d0e4f70c84
    11 Nf9fe0529e91c4977a441d3182593bb2d
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N11108c9b5ed244b1be7f283cb3608805
    15 schema:datePublished 1993-09
    16 schema:datePublishedReg 1993-09-01
    17 schema:description The genomes of all eukaryotes contain tracts of DNA in which a single base or a small number of bases is repeated. Expansions of such tracts have been associated with several human disorders including the fragile X syndrome. In addition, simple repeats are unstable in certain forms of colorectal cancer, suggesting a defect in DNA replication or repair. We show here that mutations in any three yeast genes involved in DNA mismatch repair (PMS1, MLH1 and MSH2) lead to 100- to 700-fold increases in tract instability, whereas mutations that eliminate the proof-reading function of DNA polymerases have little effect. The meiotic stability of the tracts is similar to the mitotic stability. These results suggest that tract instability is associated with DNA polymerases slipping during replication, and that some types of colorectal cancer may reflect mutations in genes involved in DNA mismatch repair.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Na21fe2cd53894dfca77363502c35e066
    22 Ne05349188cc14cb881a0392868120f42
    23 sg:journal.1018957
    24 schema:name Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair
    25 schema:pagination 274-276
    26 schema:productId N3eb44ea088de4f319eff4f15362cc26c
    27 N5a1c4d67ff084f1f989b12703a0bfe5c
    28 N5de209186f98438587f610c5a982138b
    29 N78b9ce2b13b943bcaf14233f267b344b
    30 Nfc19a9112c4a4cd2b6c971f33d6a5e86
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019075047
    32 https://doi.org/10.1038/365274a0
    33 schema:sdDatePublished 2019-04-10T18:08
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N12bbf395e14e494283db7f5f1be67230
    36 schema:url http://www.nature.com/nature/journal/v365/n6443/full/365274a0.html
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N11108c9b5ed244b1be7f283cb3608805 rdf:first sg:person.0761314210.00
    41 rdf:rest Nd3de1dc3e1604bf994797982fb6c6ef4
    42 N12bbf395e14e494283db7f5f1be67230 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N214c8e59bfea403ca9a1299de4c43fb5 rdf:first sg:person.01114005625.92
    45 rdf:rest Ne7c984f8f58b44bbb324a752c0f72c69
    46 N3da0d93e695e45c78cb03cf21f21c8da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    47 schema:name Recombination, Genetic
    48 rdf:type schema:DefinedTerm
    49 N3e086d2075e64477a57ad60b43157b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    50 schema:name Nucleic Acid Heteroduplexes
    51 rdf:type schema:DefinedTerm
    52 N3eb44ea088de4f319eff4f15362cc26c schema:name pubmed_id
    53 schema:value 8371783
    54 rdf:type schema:PropertyValue
    55 N5a1c4d67ff084f1f989b12703a0bfe5c schema:name doi
    56 schema:value 10.1038/365274a0
    57 rdf:type schema:PropertyValue
    58 N5de209186f98438587f610c5a982138b schema:name nlm_unique_id
    59 schema:value 0410462
    60 rdf:type schema:PropertyValue
    61 N78b9ce2b13b943bcaf14233f267b344b schema:name readcube_id
    62 schema:value 5ae314cc1389272c09a170204f493b39de1afeb1499ec168e7fb0c01fc6df11d
    63 rdf:type schema:PropertyValue
    64 N810d64b89c564763b9007c645355d682 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Mutation
    66 rdf:type schema:DefinedTerm
    67 N8c77ba7b61924d6f8d2989b79638a9f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Genes, Fungal
    69 rdf:type schema:DefinedTerm
    70 N8fc72a594c644f63bedc75767e139b26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name DNA Replication
    72 rdf:type schema:DefinedTerm
    73 N9451a176662c4799b24cac460e5f50cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Plasmids
    75 rdf:type schema:DefinedTerm
    76 Na21fe2cd53894dfca77363502c35e066 schema:issueNumber 6443
    77 rdf:type schema:PublicationIssue
    78 Nc3727110ebe441e3a50adaf538a85077 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name DNA, Fungal
    80 rdf:type schema:DefinedTerm
    81 Nd0f88e878a0a447ea13ba13bc4f59ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Polydeoxyribonucleotides
    83 rdf:type schema:DefinedTerm
    84 Nd3de1dc3e1604bf994797982fb6c6ef4 rdf:first sg:person.012343334147.74
    85 rdf:rest N214c8e59bfea403ca9a1299de4c43fb5
    86 Nd409259248884f35a2c4a4ff89a2b6b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name DNA Repair
    88 rdf:type schema:DefinedTerm
    89 Ne05349188cc14cb881a0392868120f42 schema:volumeNumber 365
    90 rdf:type schema:PublicationVolume
    91 Ne7c984f8f58b44bbb324a752c0f72c69 rdf:first sg:person.01010306571.22
    92 rdf:rest rdf:nil
    93 Nf3b070a12e4a4b26af05a8d0e4f70c84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Repetitive Sequences, Nucleic Acid
    95 rdf:type schema:DefinedTerm
    96 Nf9fe0529e91c4977a441d3182593bb2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name DNA-Directed DNA Polymerase
    98 rdf:type schema:DefinedTerm
    99 Nfc19a9112c4a4cd2b6c971f33d6a5e86 schema:name dimensions_id
    100 schema:value pub.1019075047
    101 rdf:type schema:PropertyValue
    102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Biological Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Genetics
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1018957 schema:issn 0090-0028
    109 1476-4687
    110 schema:name Nature
    111 rdf:type schema:Periodical
    112 sg:person.01010306571.22 schema:familyName Petes
    113 schema:givenName T D
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010306571.22
    115 rdf:type schema:Person
    116 sg:person.01114005625.92 schema:familyName Liskay
    117 schema:givenName R M
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114005625.92
    119 rdf:type schema:Person
    120 sg:person.012343334147.74 schema:familyName Prolla
    121 schema:givenName T A
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343334147.74
    123 rdf:type schema:Person
    124 sg:person.0761314210.00 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    125 schema:familyName Strand
    126 schema:givenName M
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761314210.00
    128 rdf:type schema:Person
    129 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
    130 schema:name Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...