An RNA motif that binds ATP View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-08

AUTHORS

M Sassanfar, J W Szostak

ABSTRACT

RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA. More... »

PAGES

550-553

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6437

VOLUME

364

Author Affiliations

Related Patents

  • Nucleic Acid Enzyme Biosensors For Ions
  • Detecting Structural Or Synthetic Information About Chemical Compounds
  • The Identification And Use Of Effectors And Allosteric Molecules For The Alteration Of Gene Expression
  • Electrophoretic Analysis Of Molecules Using Immobilized Probes
  • Method For Sequencing And Characterizing Polymeric Biomolecules Using Aptamers And A Method For Producing Aptamers
  • Nucleic Acid Aptamer-Based Diagnostic Methods With Novel Techniques For Signal Enhancement
  • Massively Parallel Combinatorial Genetics
  • Prna Chimera
  • Method For Detecting Target Nucleotide Sequences
  • Lateral Flow Devices
  • Fluorescence Based Biosensor
  • A Versatile Lateral Flow Strip Device
  • Sensor Housing And Reagent Chemistry
  • High Speed, Automated, Continuous Flow, Multi-Dimensional Molecular Selection And Analysis
  • Aptamer-Based Colorimetric Sensor Systems
  • Nucleic Acid Based Fluorescent Sensor For Copper Detection
  • Methods For Chemical Synthesis Of Biologically Active Compounds Using Supramolecular Protective Groups And Novel Compounds Obtainable Thereby
  • Artificial Riboswitch For Controlling Pre-Mrna Splicing
  • Programmable Genotoxic Agents And Uses Therefor
  • Fluorescent Sensor For Mercury
  • Nucleic Acid Aptamer-Based Diagnostic Methods With Novel Techniques For Signal Enhancement
  • Nucleic Acid Based Fluorescent Sensor For Mercury Detection
  • Catalytic Dna Having Ligase Activity
  • Self-Modifying Rna Molecules And Methods Of Making
  • Stabilized Aptamers To Platelet Derived Growth Factor And Their Use As Oncology Therapeutics
  • Programmable Genotoxic Agents And Uses Therefor
  • Mri Contrast Agents And High-Throughput Screening By Mri
  • Fluorescence Based Biosensor
  • Programmable Genotoxic Agents And Uses Therefor
  • Programmable Genotoxic Agents And Uses Therefor
  • The Identification And Use Of Effectors And Allosteric Molecules For The Alteration Of Gene Expression
  • Nucleic Acid Enzyme Biosensors For Ions
  • Rna Channels In Biological Membranes
  • Aptamer- And Nucleic Acid Enzyme-Based Systems For Simultaneous Detection Of Multiple Analytes
  • Prna Chimera
  • Novel Ribozymes And Novel Ribozyme Selection Systems
  • High Speed, Automated, Continuous Flow, Multi-Dimensional Molecular Selection And Analysis
  • Method Of Generating Multiple Protein Variants And Populations Of Protein Variants Prepared Thereby
  • Aptamer Based Colorimetric Sensor Systems
  • Amphiphilic Substances And Functionalized Lipid Vesicles Including The Same
  • Cell-Mediated Directed Evolution
  • Dna Aptamers And Catalysts That Bind Adenosine Or Adenosine-5'-Phosphates And Methods For Isolation Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/364550a0

    DOI

    http://dx.doi.org/10.1038/364550a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012230197

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7687750


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine Triphosphate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Binding Sites", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Consensus Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sassanfar", 
            "givenName": "M", 
            "id": "sg:person.01204436352.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204436352.11"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Szostak", 
            "givenName": "J W", 
            "id": "sg:person.01077153061.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077153061.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-2836(86)90441-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004944758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9673(01)97299-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036637020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044933284", 
              "https://doi.org/10.1038/338217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338217a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044933284", 
              "https://doi.org/10.1038/338217a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346818a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479478", 
              "https://doi.org/10.1038/346818a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00020a027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055699625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00030a077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055700518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00036a065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055701040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00054a066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055702685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00055a066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055702758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00055a083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055702775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00191a048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055712932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00195a071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055713287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3823899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062621958"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-08", 
        "datePublishedReg": "1993-08-01", 
        "description": "RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/364550a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6437", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "364"
          }
        ], 
        "name": "An RNA motif that binds ATP", 
        "pagination": "550-553", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3a44b1f2be499c16d23062995cb141d629c8daeefc77a6ac63f8f96fb63c6caf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7687750"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/364550a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012230197"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/364550a0", 
          "https://app.dimensions.ai/details/publication/pub.1012230197"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/364550a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/364550a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/364550a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/364550a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/364550a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      51 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/364550a0 schema:about N28714f63a35648c38eebd266a90cc49f
    2 N5d33a8178165412393a3df32a1efcc7f
    3 N92e980afaa5e4fce8e4d550d9f5cf75c
    4 Na48ce3fc8cb54bf186aa20f94e28d461
    5 Naa5f6e6204194ffe9956b7bb0c8ece6c
    6 Nad93dfd1df56434ca6e2c161eeac4332
    7 Nc54020bdcebe4c389ce58783f15fe42d
    8 Ncd9085a128d04727ad242503204e27d4
    9 Nec118400bd3b4ef294f268e35d34ecf6
    10 anzsrc-for:06
    11 anzsrc-for:0601
    12 schema:author N1a7fa1c77af14439ae587a51d702e7be
    13 schema:citation sg:pub.10.1038/338217a0
    14 sg:pub.10.1038/346818a0
    15 https://doi.org/10.1016/0022-2836(86)90441-9
    16 https://doi.org/10.1016/s0021-9673(01)97299-1
    17 https://doi.org/10.1021/ja00020a027
    18 https://doi.org/10.1021/ja00030a077
    19 https://doi.org/10.1021/ja00036a065
    20 https://doi.org/10.1021/ja00054a066
    21 https://doi.org/10.1021/ja00055a066
    22 https://doi.org/10.1021/ja00055a083
    23 https://doi.org/10.1021/ja00191a048
    24 https://doi.org/10.1021/ja00195a071
    25 https://doi.org/10.1126/science.3823899
    26 schema:datePublished 1993-08
    27 schema:datePublishedReg 1993-08-01
    28 schema:description RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N4c2dc72faa2f4a0896a74cc9ca5769da
    33 Ncbf55efff0cc48a6b4e5451d75b49d32
    34 sg:journal.1018957
    35 schema:name An RNA motif that binds ATP
    36 schema:pagination 550-553
    37 schema:productId N126254460d7f406f92a4eb2f075c96c4
    38 N65c7b17ad2ba47c9956e158e98ecf9cb
    39 Nd7e59017cd2e4839827515dcb4ef77d6
    40 Ndcaca19ea7c143ec915da7b325415bce
    41 Neb8c9d493bce4ed498baf2588e20c430
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012230197
    43 https://doi.org/10.1038/364550a0
    44 schema:sdDatePublished 2019-04-10T18:08
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N82492d5f4d6445f192e6ac7e104d4648
    47 schema:url http://www.nature.com/articles/364550a0
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N126254460d7f406f92a4eb2f075c96c4 schema:name nlm_unique_id
    52 schema:value 0410462
    53 rdf:type schema:PropertyValue
    54 N1a7fa1c77af14439ae587a51d702e7be rdf:first sg:person.01204436352.11
    55 rdf:rest Ne328823ec1a047948cd77c60beda6bb3
    56 N28714f63a35648c38eebd266a90cc49f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    57 schema:name Molecular Sequence Data
    58 rdf:type schema:DefinedTerm
    59 N4c2dc72faa2f4a0896a74cc9ca5769da schema:volumeNumber 364
    60 rdf:type schema:PublicationVolume
    61 N5d33a8178165412393a3df32a1efcc7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Chromatography
    63 rdf:type schema:DefinedTerm
    64 N65c7b17ad2ba47c9956e158e98ecf9cb schema:name dimensions_id
    65 schema:value pub.1012230197
    66 rdf:type schema:PropertyValue
    67 N82492d5f4d6445f192e6ac7e104d4648 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N92e980afaa5e4fce8e4d550d9f5cf75c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name DNA
    71 rdf:type schema:DefinedTerm
    72 Na48ce3fc8cb54bf186aa20f94e28d461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Adenosine Triphosphate
    74 rdf:type schema:DefinedTerm
    75 Naa5f6e6204194ffe9956b7bb0c8ece6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Nucleic Acid Conformation
    77 rdf:type schema:DefinedTerm
    78 Nad93dfd1df56434ca6e2c161eeac4332 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name RNA
    80 rdf:type schema:DefinedTerm
    81 Nc54020bdcebe4c389ce58783f15fe42d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Consensus Sequence
    83 rdf:type schema:DefinedTerm
    84 Ncbf55efff0cc48a6b4e5451d75b49d32 schema:issueNumber 6437
    85 rdf:type schema:PublicationIssue
    86 Ncd9085a128d04727ad242503204e27d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Binding Sites
    88 rdf:type schema:DefinedTerm
    89 Nd7e59017cd2e4839827515dcb4ef77d6 schema:name readcube_id
    90 schema:value 3a44b1f2be499c16d23062995cb141d629c8daeefc77a6ac63f8f96fb63c6caf
    91 rdf:type schema:PropertyValue
    92 Ndcaca19ea7c143ec915da7b325415bce schema:name pubmed_id
    93 schema:value 7687750
    94 rdf:type schema:PropertyValue
    95 Ne328823ec1a047948cd77c60beda6bb3 rdf:first sg:person.01077153061.41
    96 rdf:rest rdf:nil
    97 Neb8c9d493bce4ed498baf2588e20c430 schema:name doi
    98 schema:value 10.1038/364550a0
    99 rdf:type schema:PropertyValue
    100 Nec118400bd3b4ef294f268e35d34ecf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Base Sequence
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Biological Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Biochemistry and Cell Biology
    108 rdf:type schema:DefinedTerm
    109 sg:journal.1018957 schema:issn 0090-0028
    110 1476-4687
    111 schema:name Nature
    112 rdf:type schema:Periodical
    113 sg:person.01077153061.41 schema:familyName Szostak
    114 schema:givenName J W
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077153061.41
    116 rdf:type schema:Person
    117 sg:person.01204436352.11 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    118 schema:familyName Sassanfar
    119 schema:givenName M
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204436352.11
    121 rdf:type schema:Person
    122 sg:pub.10.1038/338217a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044933284
    123 https://doi.org/10.1038/338217a0
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/346818a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479478
    126 https://doi.org/10.1038/346818a0
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0022-2836(86)90441-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004944758
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/s0021-9673(01)97299-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036637020
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1021/ja00020a027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055699625
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1021/ja00030a077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055700518
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1021/ja00036a065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701040
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1021/ja00054a066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055702685
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1021/ja00055a066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055702758
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1021/ja00055a083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055702775
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1021/ja00191a048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055712932
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1021/ja00195a071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055713287
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1126/science.3823899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621958
    149 rdf:type schema:CreativeWork
    150 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    151 schema:name Department of Genetics, Harvard Medical School, Boston, Massachusetts.
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...