Single-shell carbon nanotubes of 1-nm diameter View Full Text


Ontology type: schema:ScholarlyArticle     


Journal

TITLE

Nature

ISSUE

6430

VOLUME

363

Related Patents

  • Removing Undesirable Nanotubes During Nanotube Device Fabrication
  • Nanotube Arrangements And Methods Therefor
  • Ropes Of Single-Wall Carbon Nanotubes
  • Method Of Producing Single-Walled Carbon Nanotubes
  • Fibers Comprised Of Epitaxially Grown Single-Wall Carbon Nanotubes, And A Method For Added Catalyst And Continuous Growth At The Tip
  • Methods Of Attaching Or Grafting Carbon Nanotubes To Silicon Surfaces And Composite Structures Derived Therefrom
  • Multi-Step Purification Of Single-Wall Carbon Nanotubes
  • Functionalized Carbon Nanotube-Polymer Composites And Interactions With Radiation
  • Nanotube Transistor Integrated Circuit Layout
  • Catalyst For The Growth Of Carbon Single-Walled Nanotubes
  • Surface And Composition Enhancements To High Aspect Ratio C-Mems
  • Method And Apparatus For Producing Single-Wall Carbon Nanotubes
  • Nanoscale Corona Discharge Electrode
  • Length-Based Liquid-Liquid Extraction Of Carbon Nanotubes Using A Phase Transfer Catalyst
  • Carbon Nanotube Substrates And Catalyzed Hot Stamp For Polishing And Patterning The Substrates
  • Concentric Gate Nanotube Transistor Devices
  • Quantitative Characterization Of Metallic And Semiconductor Single-Walled Carbon Nanotube Ratios
  • Buffer Bilayers For Electronic Devices
  • Mixed Structures Of Single Walled And Multi Walled Carbon Nanotubes
  • Fluorination Of Multi-Layered Carbon Nanomaterials
  • Method For Producing Large-Diameter 3d Carbon Nano-Onion Structures At Room Temperature
  • Catalyst For Carbon Nanotube Growth
  • Method For Preparing Uniform Single Walled Carbon Nanotubes
  • Process For The Simultaneous And Selective Preparation Of Single-Walled And Multi-Walled Carbon Nanotubes
  • Sidewall Functionalization Of Carbon Nanotubes With Organosilanes For Polymer Composites
  • Single Wall Carbon Nanotube Purification Process And Improved Single Wall Carbon Nanotubes
  • Water Dispersible Polypyrroles Made With Polymeric Acid Colloids For Electronics Applications
  • Drug Delivery Device Comprising An Active Compound And A Thermo-Sensitive Polymeric Material
  • Sidewall Functionalization Of Nanotubes With Hydroxyl Terminated Moieties
  • Subfluorinated Graphite Fluorides As Electrode Materials
  • Catalytic Growth Of Single- And Double-Wall Carbon Nanotubes From Metal Particles
  • Ozonation Of Carbon Nanotubes In Fluorocarbons
  • Ropes Comprised Of Single-Walled And Double-Walled Carbon Nanotubes
  • Method For Non-Reactive Separation Of Nanomorphic Carbon Species
  • Method For Purification Of As-Produced Single-Wall Carbon Nanotubes
  • Welding Of Carbon Single-Walled Nanotubes By Microwave Treatment
  • Fabrication Of Carbon Nanotube Reinforced Epoxy Polymer Composites Using Functionalized Carbon Nanotubes
  • High Work Function Transparent Conductors
  • Carbon Nanotube High Frequency Transistor Technology
  • Magnetic Nanotransistor
  • Single-Walled Carbon Nanotube-Ceramic Composites And Methods Of Use
  • Carbon Nanotube Transistor Fabrication
  • Method For Preparing Single Walled Carbon Nanotubes
  • Electrochemistry Of Carbon Subfluorides
  • Nanostructures, Nanogrooves, And Nanowires
  • Hybrid Materials And Methods For Producing The Same
  • Nanotube Transistor And Rectifying Devices
  • Production Method And Device For Single Layer Carbon Nanotube
  • Field Emission Ion Source Based On Nanostructure-Containing Material
  • Covalently Functionalized Carbon Nanostructures And Methods For Their Separation
  • Processes For The Recovery Of Catalytic Metal And Carbon Nanotubes
  • Fibers Of Aligned Single-Wall Carbon Nanotubes And Process For Making The Same
  • Catalyst For Synthesis Of Carbon Single-Walled Nanotubes
  • Catalyst For Carbon Nanotube Growth
  • Metallic Catalytic Particle For Producing Single-Walled Carbon Nanotubes
  • Macroscopically Manipulable Nanoscale Devices Made From Nanotube Assemblies
  • Hybrid Materials And Methods For Producing The Same
  • Single-Wall Carbon Nanotubes From High Pressure Co
  • Method For Preparing Single Walled Carbon Nanotubes From A Metal Layer
  • Heterostructure Nanotube Devices
  • Carbon Nanotube Pastes And Methods Of Use
  • Nanotube-Amino Acids And Methods For Preparing Same
  • Process For Preparing Boron Carbon Nanorods
  • Photoresponsive Ionic Organic Compound, Method Of Producing The Same, And Photoresponsive Carbon Nanotube Dispersant Comprising Said Ionic Organic Compound
  • Methods For Purifying Carbon Materials
  • Method And Apparatus For Producing Carbon Nanotubes
  • Method For Preparing Single Walled Carbon Nanotubes From A Metal Layer
  • Single-Walled Carbon Nanotube Catalysts And Method For Preparing Same
  • Polymer Composites Containing Nanotubes
  • Process And Apparatus For Producing Single-Walled Carbon Nanotubes
  • Method For Preparing Catalysts Supported On Carbon Nanotubes Networks
  • Smart Materials: Strain Sensing And Stress Determination By Means Of Nanotube Sensing Systems, Composites, And Devices
  • Methods For Determining Particle Size Of Metal Nanocatalyst For Growing Carbon Nanotubes
  • Methods Of Making Polymer Composites Containing Single-Walled Carbon Nanotubes
  • Continuous Fiber Of Fullerene Nanotubes
  • Carbon Nanotube-Filled Composites Prepared By In-Situ Polymerization
  • Polymer-Wrapped Single Wall Carbon Nanotubes
  • Copolymerization Of Polybenzazoles And Other Aromatic Polymers With Carbon Nanotubes
  • Method And Catalyst For Producing Single Walled Carbon Nanotubes
  • Fluoride Ion Electrochemical Cell
  • Method Of Purifying Nanotubes And Nanofibers Using Electromagnetic Radiation
  • High Work-Function And High Conductivity Compositions Of Electrically Conducting Polymers
  • Methods Of Preparing Supported Catalysts From Metal Loaded Carbon Nanotubes
  • Fabricating Carbon Nanotube Transistor Devices
  • Method For Forming A Patterned Array Of Fullerene Nanotubes
  • Fullerene Nanotube Compositions
  • Method Of Making Carbon Nanotubes
  • Field Emission Cathode Having An Electrically Conducting Material Shaped Of A Narrow Rod Or Knife Edge
  • Catalytic Processes For Obtaining Inorganic Nanostructures By Using Soft Metals
  • Carbon Single-Walled Nanotubes As Electrodes For Electrochromic Glasses
  • Methods For Growing Long Carbon Single-Walled Nanotubes
  • Fluorescent Security Ink Using Carbon Nanotubes
  • Carbon Nanotube Transistor Process With Transferred Carbon Nanotubes
  • Segregated Flow Reactor And Method For Growth Of Ultra-Long Carbon Nanotubes
  • Water Dispersible Polythiophenes Made With Polymeric Acid Colloids
  • Functional Nanoparticle Filled Carbon Nanotubes And Methods Of Their Production
  • Thermosets Containing Carbon Nanotubes By Extrusion
  • Fluoride Ion Electrochemical Cell
  • Nanoscale Catalyst Particles/Aluminosilicate To Reduce Carbon Monoxide In The Mainstream Smoke Of A Cigarette
  • High Performance Field Effect Transistors Comprising Carbon Nanotubes Fabricated Using Solution Based Processing
  • Method For Forming An Array Of Single -Wall Carbon Nanotubes And Compositions Thereof
  • Catalytic Growth Of Single-And Double-Wall Carbon Nanotubes From Metal Particles
  • Gas-Phase Nucleation And Growth Of Single-Wall Carbon Nanotubes From High Pressure Co
  • Method Of Making Ropes Of Single-Wall Carbon Nanotubes
  • Hybrid Materials And Methods For Producing The Same
  • Field Emission Cathode Having An Electrically Conducting Material Shaped Of A Narrow Rod Or Knife Edge
  • Electrical Conductors Comprising Single-Wall Carbon Nanotubes
  • Single-Wall Carbon Nanotube-Polymer Composites
  • Ropes Of Single-Wall Carbon Nanotubes And Compositions Thereof
  • Single-Wall Carbon Nanotube Alewives, Process For Making, And Compositions Thereof
  • Methods For Production Of Carbon Nanostructures
  • Apparatus For Producing Single-Wall Carbon Nanotubes
  • Field Emission Cathode
  • Method For Fractionating Single-Wall Carbon Nanotubes
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/363603a0

    DOI

    http://dx.doi.org/10.1038/363603a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003373531


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "familyName": "Iijima", 
            "givenName": "Sumio", 
            "id": "sg:person.01203003164.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203003164.09"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Ichihashi", 
            "givenName": "Toshinari", 
            "id": "sg:person.0652667435.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652667435.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/362522a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001467966", 
              "https://doi.org/10.1038/362522a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356776a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009023835", 
              "https://doi.org/10.1038/356776a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(93)90057-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015185349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354056a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016485857", 
              "https://doi.org/10.1038/354056a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/362520a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033060776", 
              "https://doi.org/10.1038/362520a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361333a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049751097", 
              "https://doi.org/10.1038/361333a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(76)90115-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(76)90115-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.1579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.1579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.3100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.3100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.32.l107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063050933"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-06", 
        "datePublishedReg": "1993-06-01", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/363603a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6430", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "363"
          }
        ], 
        "name": "Single-shell carbon nanotubes of 1-nm diameter", 
        "pagination": "603-605", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1011cae3f31d3e634b3d1f1ff8762a44f6aeb1f89c456be229bc2d5a51024e5c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/363603a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003373531"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/363603a0", 
          "https://app.dimensions.ai/details/publication/pub.1003373531"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000421.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nature/journal/v363/n6430/full/363603a0.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/363603a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/363603a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/363603a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/363603a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      19 PREDICATES      35 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/363603a0 schema:author N12798d273af345c8a7e824c577d17b85
    2 schema:citation sg:pub.10.1038/354056a0
    3 sg:pub.10.1038/356776a0
    4 sg:pub.10.1038/361333a0
    5 sg:pub.10.1038/362520a0
    6 sg:pub.10.1038/362522a0
    7 https://doi.org/10.1016/0009-2614(93)90057-8
    8 https://doi.org/10.1016/0022-0248(76)90115-9
    9 https://doi.org/10.1103/physrevlett.68.1579
    10 https://doi.org/10.1103/physrevlett.68.631
    11 https://doi.org/10.1103/physrevlett.69.3100
    12 https://doi.org/10.1143/jjap.32.l107
    13 schema:datePublished 1993-06
    14 schema:datePublishedReg 1993-06-01
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N255d0aa0be8b4f89a9feda680a2df7e6
    19 Nc233908c0297497db340fb6e9035bf8e
    20 sg:journal.1018957
    21 schema:name Single-shell carbon nanotubes of 1-nm diameter
    22 schema:pagination 603-605
    23 schema:productId N892f9829f2ab4b0ba255f7c45a28d68c
    24 Nbcfd061dcb324a88a4e6bf644bbfadd4
    25 Nc65deeabd6a249bb899cfd9f9c878546
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003373531
    27 https://doi.org/10.1038/363603a0
    28 schema:sdDatePublished 2019-04-10T18:56
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N634fa12ce755408392bf5520615366c5
    31 schema:url http://www.nature.com/nature/journal/v363/n6430/full/363603a0.html
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N12798d273af345c8a7e824c577d17b85 rdf:first sg:person.01203003164.09
    36 rdf:rest N49d6dac8376146bf8c7a522ba748c092
    37 N255d0aa0be8b4f89a9feda680a2df7e6 schema:volumeNumber 363
    38 rdf:type schema:PublicationVolume
    39 N49d6dac8376146bf8c7a522ba748c092 rdf:first sg:person.0652667435.22
    40 rdf:rest rdf:nil
    41 N634fa12ce755408392bf5520615366c5 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N892f9829f2ab4b0ba255f7c45a28d68c schema:name doi
    44 schema:value 10.1038/363603a0
    45 rdf:type schema:PropertyValue
    46 Nbcfd061dcb324a88a4e6bf644bbfadd4 schema:name dimensions_id
    47 schema:value pub.1003373531
    48 rdf:type schema:PropertyValue
    49 Nc233908c0297497db340fb6e9035bf8e schema:issueNumber 6430
    50 rdf:type schema:PublicationIssue
    51 Nc65deeabd6a249bb899cfd9f9c878546 schema:name readcube_id
    52 schema:value 1011cae3f31d3e634b3d1f1ff8762a44f6aeb1f89c456be229bc2d5a51024e5c
    53 rdf:type schema:PropertyValue
    54 sg:journal.1018957 schema:issn 0090-0028
    55 1476-4687
    56 schema:name Nature
    57 rdf:type schema:Periodical
    58 sg:person.01203003164.09 schema:familyName Iijima
    59 schema:givenName Sumio
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203003164.09
    61 rdf:type schema:Person
    62 sg:person.0652667435.22 schema:familyName Ichihashi
    63 schema:givenName Toshinari
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652667435.22
    65 rdf:type schema:Person
    66 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
    67 https://doi.org/10.1038/354056a0
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1038/356776a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009023835
    70 https://doi.org/10.1038/356776a0
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1038/361333a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049751097
    73 https://doi.org/10.1038/361333a0
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1038/362520a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033060776
    76 https://doi.org/10.1038/362520a0
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1038/362522a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001467966
    79 https://doi.org/10.1038/362522a0
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0009-2614(93)90057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015185349
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0022-0248(76)90115-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813985
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1103/physrevlett.68.1579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804196
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1103/physrevlett.68.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804983
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrevlett.69.3100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805707
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1143/jjap.32.l107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063050933
    92 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...