Single-shell carbon nanotubes of 1-nm diameter View Full Text


Ontology type: schema:ScholarlyArticle     


Journal

TITLE

Nature

ISSUE

6430

VOLUME

363

Related Patents

  • Removing Undesirable Nanotubes During Nanotube Device Fabrication
  • Nanotube Arrangements And Methods Therefor
  • Ropes Of Single-Wall Carbon Nanotubes
  • Method Of Producing Single-Walled Carbon Nanotubes
  • Fibers Comprised Of Epitaxially Grown Single-Wall Carbon Nanotubes, And A Method For Added Catalyst And Continuous Growth At The Tip
  • Methods Of Attaching Or Grafting Carbon Nanotubes To Silicon Surfaces And Composite Structures Derived Therefrom
  • Multi-Step Purification Of Single-Wall Carbon Nanotubes
  • Functionalized Carbon Nanotube-Polymer Composites And Interactions With Radiation
  • Nanotube Transistor Integrated Circuit Layout
  • Catalyst For The Growth Of Carbon Single-Walled Nanotubes
  • Surface And Composition Enhancements To High Aspect Ratio C-Mems
  • Method And Apparatus For Producing Single-Wall Carbon Nanotubes
  • Nanoscale Corona Discharge Electrode
  • Length-Based Liquid-Liquid Extraction Of Carbon Nanotubes Using A Phase Transfer Catalyst
  • Carbon Nanotube Substrates And Catalyzed Hot Stamp For Polishing And Patterning The Substrates
  • Concentric Gate Nanotube Transistor Devices
  • Quantitative Characterization Of Metallic And Semiconductor Single-Walled Carbon Nanotube Ratios
  • Buffer Bilayers For Electronic Devices
  • Mixed Structures Of Single Walled And Multi Walled Carbon Nanotubes
  • Fluorination Of Multi-Layered Carbon Nanomaterials
  • Method For Producing Large-Diameter 3d Carbon Nano-Onion Structures At Room Temperature
  • Catalyst For Carbon Nanotube Growth
  • Method For Preparing Uniform Single Walled Carbon Nanotubes
  • Process For The Simultaneous And Selective Preparation Of Single-Walled And Multi-Walled Carbon Nanotubes
  • Sidewall Functionalization Of Carbon Nanotubes With Organosilanes For Polymer Composites
  • Single Wall Carbon Nanotube Purification Process And Improved Single Wall Carbon Nanotubes
  • Water Dispersible Polypyrroles Made With Polymeric Acid Colloids For Electronics Applications
  • Drug Delivery Device Comprising An Active Compound And A Thermo-Sensitive Polymeric Material
  • Sidewall Functionalization Of Nanotubes With Hydroxyl Terminated Moieties
  • Subfluorinated Graphite Fluorides As Electrode Materials
  • Catalytic Growth Of Single- And Double-Wall Carbon Nanotubes From Metal Particles
  • Ozonation Of Carbon Nanotubes In Fluorocarbons
  • Ropes Comprised Of Single-Walled And Double-Walled Carbon Nanotubes
  • Method For Non-Reactive Separation Of Nanomorphic Carbon Species
  • Method For Purification Of As-Produced Single-Wall Carbon Nanotubes
  • Welding Of Carbon Single-Walled Nanotubes By Microwave Treatment
  • Fabrication Of Carbon Nanotube Reinforced Epoxy Polymer Composites Using Functionalized Carbon Nanotubes
  • High Work Function Transparent Conductors
  • Carbon Nanotube High Frequency Transistor Technology
  • Magnetic Nanotransistor
  • Single-Walled Carbon Nanotube-Ceramic Composites And Methods Of Use
  • Carbon Nanotube Transistor Fabrication
  • Method For Preparing Single Walled Carbon Nanotubes
  • Electrochemistry Of Carbon Subfluorides
  • Nanostructures, Nanogrooves, And Nanowires
  • Hybrid Materials And Methods For Producing The Same
  • Nanotube Transistor And Rectifying Devices
  • Production Method And Device For Single Layer Carbon Nanotube
  • Field Emission Ion Source Based On Nanostructure-Containing Material
  • Covalently Functionalized Carbon Nanostructures And Methods For Their Separation
  • Processes For The Recovery Of Catalytic Metal And Carbon Nanotubes
  • Fibers Of Aligned Single-Wall Carbon Nanotubes And Process For Making The Same
  • Catalyst For Synthesis Of Carbon Single-Walled Nanotubes
  • Catalyst For Carbon Nanotube Growth
  • Metallic Catalytic Particle For Producing Single-Walled Carbon Nanotubes
  • Macroscopically Manipulable Nanoscale Devices Made From Nanotube Assemblies
  • Hybrid Materials And Methods For Producing The Same
  • Single-Wall Carbon Nanotubes From High Pressure Co
  • Method For Preparing Single Walled Carbon Nanotubes From A Metal Layer
  • Heterostructure Nanotube Devices
  • Carbon Nanotube Pastes And Methods Of Use
  • Nanotube-Amino Acids And Methods For Preparing Same
  • Process For Preparing Boron Carbon Nanorods
  • Photoresponsive Ionic Organic Compound, Method Of Producing The Same, And Photoresponsive Carbon Nanotube Dispersant Comprising Said Ionic Organic Compound
  • Methods For Purifying Carbon Materials
  • Method And Apparatus For Producing Carbon Nanotubes
  • Method For Preparing Single Walled Carbon Nanotubes From A Metal Layer
  • Single-Walled Carbon Nanotube Catalysts And Method For Preparing Same
  • Fullerene Nanotube Compositions
  • Polymer Composites Containing Nanotubes
  • Method And Catalyst For Producing Single Walled Carbon Nanotubes
  • Fabricating Carbon Nanotube Transistor Devices
  • Continuous Fiber Of Fullerene Nanotubes
  • Smart Materials: Strain Sensing And Stress Determination By Means Of Nanotube Sensing Systems, Composites, And Devices
  • Method For Preparing Catalysts Supported On Carbon Nanotubes Networks
  • Methods For Determining Particle Size Of Metal Nanocatalyst For Growing Carbon Nanotubes
  • Methods Of Making Polymer Composites Containing Single-Walled Carbon Nanotubes
  • Method Of Purifying Nanotubes And Nanofibers Using Electromagnetic Radiation
  • Carbon Nanotube-Filled Composites Prepared By In-Situ Polymerization
  • Polymer-Wrapped Single Wall Carbon Nanotubes
  • Copolymerization Of Polybenzazoles And Other Aromatic Polymers With Carbon Nanotubes
  • Process And Apparatus For Producing Single-Walled Carbon Nanotubes
  • Method For Forming A Patterned Array Of Fullerene Nanotubes
  • Method Of Making Carbon Nanotubes
  • Fluoride Ion Electrochemical Cell
  • High Work-Function And High Conductivity Compositions Of Electrically Conducting Polymers
  • Methods Of Preparing Supported Catalysts From Metal Loaded Carbon Nanotubes
  • Catalytic Processes For Obtaining Inorganic Nanostructures By Using Soft Metals
  • Field Emission Cathode Having An Electrically Conducting Material Shaped Of A Narrow Rod Or Knife Edge
  • Carbon Single-Walled Nanotubes As Electrodes For Electrochromic Glasses
  • Methods For Growing Long Carbon Single-Walled Nanotubes
  • Fluorescent Security Ink Using Carbon Nanotubes
  • Carbon Nanotube Transistor Process With Transferred Carbon Nanotubes
  • Segregated Flow Reactor And Method For Growth Of Ultra-Long Carbon Nanotubes
  • Water Dispersible Polythiophenes Made With Polymeric Acid Colloids
  • Functional Nanoparticle Filled Carbon Nanotubes And Methods Of Their Production
  • Thermosets Containing Carbon Nanotubes By Extrusion
  • Fluoride Ion Electrochemical Cell
  • Nanoscale Catalyst Particles/Aluminosilicate To Reduce Carbon Monoxide In The Mainstream Smoke Of A Cigarette
  • High Performance Field Effect Transistors Comprising Carbon Nanotubes Fabricated Using Solution Based Processing
  • Hybrid Materials And Methods For Producing The Same
  • Method Of Making Ropes Of Single-Wall Carbon Nanotubes
  • Field Emission Cathode Having An Electrically Conducting Material Shaped Of A Narrow Rod Or Knife Edge
  • Carbon Single-Walled Nanotubes As Electrodes For Electrochromic Glasses
  • Methods For Growing Long Carbon Single-Walled Nanotubes
  • Carbon Nanotube Transistor Process With Transferred Carbon Nanotubes
  • Fluorescent Security Ink Using Carbon Nanotubes
  • Methods For Production Of Carbon Nanostructures
  • Apparatus For Producing Single-Wall Carbon Nanotubes
  • Method For Fractionating Single-Wall Carbon Nanotubes
  • High Performance Field Effect Transistors Comprising Carbon Nanotubes Fabricated Using Solution Based Processing
  • Functional Nanoparticle Filled Carbon Nanotubes And Methods Of Their Production
  • Thermosets Containing Carbon Nanotubes By Extrusion
  • Field Emission Cathode
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/363603a0

    DOI

    http://dx.doi.org/10.1038/363603a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003373531


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "familyName": "Iijima", 
            "givenName": "Sumio", 
            "id": "sg:person.01203003164.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203003164.09"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Ichihashi", 
            "givenName": "Toshinari", 
            "id": "sg:person.0652667435.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652667435.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/362522a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001467966", 
              "https://doi.org/10.1038/362522a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356776a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009023835", 
              "https://doi.org/10.1038/356776a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(93)90057-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015185349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354056a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016485857", 
              "https://doi.org/10.1038/354056a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/362520a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033060776", 
              "https://doi.org/10.1038/362520a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/361333a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049751097", 
              "https://doi.org/10.1038/361333a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(76)90115-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(76)90115-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.1579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.1579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.3100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.3100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060805707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.32.l107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063050933"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-06", 
        "datePublishedReg": "1993-06-01", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/363603a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6430", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "363"
          }
        ], 
        "name": "Single-shell carbon nanotubes of 1-nm diameter", 
        "pagination": "603-605", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1011cae3f31d3e634b3d1f1ff8762a44f6aeb1f89c456be229bc2d5a51024e5c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/363603a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003373531"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/363603a0", 
          "https://app.dimensions.ai/details/publication/pub.1003373531"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000421.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nature/journal/v363/n6430/full/363603a0.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/363603a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/363603a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/363603a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/363603a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      19 PREDICATES      35 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/363603a0 schema:author N09b643eb5c114a279c85645e21cfd39c
    2 schema:citation sg:pub.10.1038/354056a0
    3 sg:pub.10.1038/356776a0
    4 sg:pub.10.1038/361333a0
    5 sg:pub.10.1038/362520a0
    6 sg:pub.10.1038/362522a0
    7 https://doi.org/10.1016/0009-2614(93)90057-8
    8 https://doi.org/10.1016/0022-0248(76)90115-9
    9 https://doi.org/10.1103/physrevlett.68.1579
    10 https://doi.org/10.1103/physrevlett.68.631
    11 https://doi.org/10.1103/physrevlett.69.3100
    12 https://doi.org/10.1143/jjap.32.l107
    13 schema:datePublished 1993-06
    14 schema:datePublishedReg 1993-06-01
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N822c02a5a7bf47cd90868bb5bbdbf310
    19 Nf5794d5d3ed4441ea0e1e1723488e1d1
    20 sg:journal.1018957
    21 schema:name Single-shell carbon nanotubes of 1-nm diameter
    22 schema:pagination 603-605
    23 schema:productId N87160f692d00471581782522daff8113
    24 Nbb814a70a3f0447184ee504a2990bb4d
    25 Ne3b06460cef4449886d4ecb613319837
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003373531
    27 https://doi.org/10.1038/363603a0
    28 schema:sdDatePublished 2019-04-10T18:56
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nc17e64c9a8b84c8b90c40555069c169c
    31 schema:url http://www.nature.com/nature/journal/v363/n6430/full/363603a0.html
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N09b643eb5c114a279c85645e21cfd39c rdf:first sg:person.01203003164.09
    36 rdf:rest Nba57ea8182c14a77a5a2f4a9505dea41
    37 N822c02a5a7bf47cd90868bb5bbdbf310 schema:volumeNumber 363
    38 rdf:type schema:PublicationVolume
    39 N87160f692d00471581782522daff8113 schema:name readcube_id
    40 schema:value 1011cae3f31d3e634b3d1f1ff8762a44f6aeb1f89c456be229bc2d5a51024e5c
    41 rdf:type schema:PropertyValue
    42 Nba57ea8182c14a77a5a2f4a9505dea41 rdf:first sg:person.0652667435.22
    43 rdf:rest rdf:nil
    44 Nbb814a70a3f0447184ee504a2990bb4d schema:name dimensions_id
    45 schema:value pub.1003373531
    46 rdf:type schema:PropertyValue
    47 Nc17e64c9a8b84c8b90c40555069c169c schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Ne3b06460cef4449886d4ecb613319837 schema:name doi
    50 schema:value 10.1038/363603a0
    51 rdf:type schema:PropertyValue
    52 Nf5794d5d3ed4441ea0e1e1723488e1d1 schema:issueNumber 6430
    53 rdf:type schema:PublicationIssue
    54 sg:journal.1018957 schema:issn 0090-0028
    55 1476-4687
    56 schema:name Nature
    57 rdf:type schema:Periodical
    58 sg:person.01203003164.09 schema:familyName Iijima
    59 schema:givenName Sumio
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203003164.09
    61 rdf:type schema:Person
    62 sg:person.0652667435.22 schema:familyName Ichihashi
    63 schema:givenName Toshinari
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652667435.22
    65 rdf:type schema:Person
    66 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
    67 https://doi.org/10.1038/354056a0
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1038/356776a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009023835
    70 https://doi.org/10.1038/356776a0
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1038/361333a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049751097
    73 https://doi.org/10.1038/361333a0
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1038/362520a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033060776
    76 https://doi.org/10.1038/362520a0
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1038/362522a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001467966
    79 https://doi.org/10.1038/362522a0
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0009-2614(93)90057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015185349
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0022-0248(76)90115-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813985
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1103/physrevlett.68.1579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804196
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1103/physrevlett.68.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804983
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrevlett.69.3100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805707
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1143/jjap.32.l107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063050933
    92 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...