Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-10

AUTHORS

D Shweiki, A Itin, D Soffer, E Keshet

ABSTRACT

Inefficient vascular supply and the resultant reduction in tissue oxygen tension often lead to neovascularization in order to satisfy the needs of the tissue. Examples include the compensatory development of collateral blood vessels in ischaemic tissues that are otherwise quiescent for angiogenesis and angiogenesis associated with the healing of hypoxic wounds. But the presumptive hypoxia-induced angiogenic factors that mediate this feedback response have not been identified. Here we show that vascular endothelial growth factor (VEGF; also known as vascular permeability factor) probably functions as a hypoxia-inducible angiogenic factor. VEGF messenger RNA levels are dramatically increased within a few hours of exposing different cell cultures to hypoxia and return to background when normal oxygen supply is resumed. In situ analysis of tumour specimens undergoing neovascularization show that the production of VEGF is specifically induced in a subset of glioblastoma cells distinguished by their immediate proximity to necrotic foci (presumably hypoxic regions) and the clustering of capillaries alongside VEGF-producing cells. More... »

PAGES

843-845

Journal

TITLE

Nature

ISSUE

6398

VOLUME

359

Author Affiliations

Related Patents

  • Therapeutic Method For Reducing Angiogenesis
  • Vascular Endothelial Cell Growth Factor Antagonists And Uses Thereof
  • Combined Methods And Compositions For Coagulation And Tumor Treatment
  • Facilitation Of Wound Healing With Cm101/Gbs Toxin
  • Compositions For Targeting The Vasculature Of Solid Tumors
  • Methods And Compositions For Targeting The Vasculature Of Solid Tumors
  • Compounds And Methods For Inhibiting Hyper-Proliferative Cell Growth
  • Compounds And Methods For Inhibiting Hyper-Proliferative Cell Growth
  • Induction Of Vascular Endothelial Growth Factor (Vegf) By Transition Metals
  • Kits And Methods For The Specific Coagulation Of Vasculature
  • Treatment Of Platelet Derived Growth Factor Related Disorders Such As Cancers
  • Methods And Compositions For Screening For Angiogenesis Modulating Compounds
  • Combined Methods And Compositions For Tumor Vasculature Targeting And Tumor Treatment
  • Method Of Treating Cancer With Combinations Of Histone Deacetylase Inhibitors (Hdac1) Substances
  • Inhibition Of Neovascularization By Simultaneous Inhibition Of Prostanoid Ip And Ep4 Receptors
  • Human Monoclonal Antibody Neutralizing Vascular Endothelial Growth Factor Receptor And Use Thereof
  • Compositions For Treating Cancer With Combinations Of Histone Deacetylase Inhibitors (Hdac1) Substances
  • Antibody Methods For Selectively Inhibiting Vegf
  • Medicinal Uses Of Hydrazones
  • Medicinal Uses Of Dihydropyrazoles
  • Compositions For Targeting The Vasculature Of Solid Tumors
  • Treatment Of Platelet Derived Growth Factor Related Disorders Such As Cancers
  • Compounds And Methods For Inhibiting Hyper-Proliferative Cell Growth
  • Facilitation Of Wound Healing With Cm101/Gbs Toxin
  • Analogs For Specific Oligosaccharide-Protein Interactions And Uses Therefor
  • Method Of Treating Cancer With Combinations Of Histone Deacetylase Inhibitors (Hdac1) Substances
  • 3-[4-Substituted Heterocyclyl)-Pyrrol-2-Ylmethylidene]-2- Indolinone Derivatives As Kinase Inhibitors
  • Methods For Treating The Vasculature Of Solid Tumors
  • Treatment Of Platelet Derived Growth Factor Related Disorders Such As Cancers
  • Tissue Factor Compositions And Ligands For The Specific Coagulation Of Vasculature
  • Substituted Pyridines And Pyridazines With Angiogenesis Inhibiting Activity
  • Vegf-Gelonin For Targeting The Vasculature Of Solid Tumors
  • Pyrrole Substituted 2-Indolinone Protein Kinase Inhibitors
  • Facilitation Of Keloid Healing With Cm101/Gbs Toxin
  • Heteroarylcarboxamide Compounds Active Against Protein Tyrosine Kinase Related Disorders
  • Treatment Protocol Generation For Diseases Related To Angiogenesis
  • Antibodies That Bind To Endoglin
  • Methods For Targeting The Vasculature Of Solid Tumors
  • Treatment Of Platelet Derived Growth Factor Related Disorders Such As Cancers
  • Endothelial-Cell Specific Promoter
  • Substituted Pyridines And Pyridazines With Angiogenesis Inhibiting Activity
  • Combined Methods For Tumor Coagulation And Tumor Treatment
  • Paramyxovirus Vector Encoding Angiogenesis Gene And Use Thereof
  • Methods For Using And Identifying Modulators Of Delta-Like 4
  • Vascular Endothelial Cell Growth Factor Antagonists And Uses Thereof
  • Methods For The Specific Coagulation Of Vasculature
  • Methods For Targeting The Vasculature Of Solid Tumors
  • Methods And Compositions For The Specific Coagulation Of Vasculature
  • Angiogenesis Inhibiting 5-Substituted-1,2,4-Thiadiazolyl Derivatives
  • Angiogenesis Inhibiting Thiadiazolyl Pyridazine Derivatives
  • 3-Methylidenyl-2-Indolinone Modulators Of Protein Kinase
  • Isoxazole-4-Carboxamide Compounds Active Against Protein Tryosine Kinase Related Disorders
  • Inhibition Of Neovascularization By Inhibition Of Prostanoid Ip Receptors
  • Treatment With Anti-Vegf Antibodies
  • Stent Apparatus And Treatment Methods
  • Agents For The Prevention Of Damages Caused By Stress Conditions
  • Vascular Endothelial Cell Growth Factor Antagonists And Uses Thereof
  • Substituted Pyrimidine Derivatives Useful In The Treatment Of Cancer And Other Disorders
  • Methods And Compositions For Screening For Angiogenesis Modulating Compounds
  • Crystals Of The Tyrosine Kinase Domain Of Non-Insulin Receptor Tyrosine Kinases
  • Methods Of Modulating Protein Tyrosine Kinase Function With Substituted Indolinone Compounds
  • Treatment Of Platelet Derived Growth Factor Related Disorders Such As Cancers
  • Process And Device For Making Gratings In Optical Fibres
  • 3-(4-Amidopyrrol-2-Ylmethylidene)-2-Indolinone Derivatives As Protein Kinase Inhibitors
  • Anti-Angiogenic Compositions And Methods Of Use
  • Rnai Modulation Of Hif-1 And Therapeutic Uses Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/359843a0

    DOI

    http://dx.doi.org/10.1038/359843a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028884048

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1279431


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Hypoxia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endothelial Growth Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endothelium, Vascular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glioblastoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Necrosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neovascularization, Pathologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factor A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hebrew University of Jerusalem", 
              "id": "https://www.grid.ac/institutes/grid.9619.7", 
              "name": [
                "Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shweiki", 
            "givenName": "D", 
            "id": "sg:person.0712467750.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712467750.87"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Itin", 
            "givenName": "A", 
            "id": "sg:person.0760603150.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760603150.60"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Soffer", 
            "givenName": "D", 
            "type": "Person"
          }, 
          {
            "familyName": "Keshet", 
            "givenName": "E", 
            "id": "sg:person.0623317475.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623317475.69"
            ], 
            "type": "Person"
          }
        ], 
        "datePublished": "1992-10", 
        "datePublishedReg": "1992-10-01", 
        "description": "Inefficient vascular supply and the resultant reduction in tissue oxygen tension often lead to neovascularization in order to satisfy the needs of the tissue. Examples include the compensatory development of collateral blood vessels in ischaemic tissues that are otherwise quiescent for angiogenesis and angiogenesis associated with the healing of hypoxic wounds. But the presumptive hypoxia-induced angiogenic factors that mediate this feedback response have not been identified. Here we show that vascular endothelial growth factor (VEGF; also known as vascular permeability factor) probably functions as a hypoxia-inducible angiogenic factor. VEGF messenger RNA levels are dramatically increased within a few hours of exposing different cell cultures to hypoxia and return to background when normal oxygen supply is resumed. In situ analysis of tumour specimens undergoing neovascularization show that the production of VEGF is specifically induced in a subset of glioblastoma cells distinguished by their immediate proximity to necrotic foci (presumably hypoxic regions) and the clustering of capillaries alongside VEGF-producing cells.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/359843a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6398", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "359"
          }
        ], 
        "name": "Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis", 
        "pagination": "843-845", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8998cfcb28585b2c47fd5be8cdfee637681eeaf94fe544b02b5b202954848afc"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1279431"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/359843a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028884048"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/359843a0", 
          "https://app.dimensions.ai/details/publication/pub.1028884048"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nature/journal/v359/n6398/full/359843a0.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/359843a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/359843a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/359843a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/359843a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      20 PREDICATES      46 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/359843a0 schema:about N092af606e5554491bd32fc27b96d9d51
    2 N115658ddef3b4640b30f2f80f6696a84
    3 N1d326fb4b4b444f881a99e55e457a74a
    4 N2e70aeb0dc2b4f8b9bfd65968321f58d
    5 N2f8fd89e15ad484888f6d870966d6ffc
    6 N43b282d2ccdd4b4491446cd02a3455dc
    7 N4caa2f2f626c48e99077f4e5e8707f28
    8 N4f2b12839c83436c80d9d78eb4f7eaad
    9 N5db4a1c4c42d406bb92dfaae352580b1
    10 N706aadd50d044c55ab0c44e722a907b6
    11 N819a6426304a4fb6b30383753c36a827
    12 N8632cf3ea2c942f19a91ec4ff9b97ae7
    13 N99c694e80103408d99cbd7d5f293ffda
    14 N9c0be2a91d754be894af3a6745b3512a
    15 Na2d121dc00cc4d92926b42c3281c49ac
    16 Nd6e5e98b2e9c4e0586f28b113db75506
    17 Ne120527b80d74781a21be4b07d2047cf
    18 anzsrc-for:06
    19 anzsrc-for:0601
    20 schema:author N7877675183994626b77b849c860954b5
    21 schema:datePublished 1992-10
    22 schema:datePublishedReg 1992-10-01
    23 schema:description Inefficient vascular supply and the resultant reduction in tissue oxygen tension often lead to neovascularization in order to satisfy the needs of the tissue. Examples include the compensatory development of collateral blood vessels in ischaemic tissues that are otherwise quiescent for angiogenesis and angiogenesis associated with the healing of hypoxic wounds. But the presumptive hypoxia-induced angiogenic factors that mediate this feedback response have not been identified. Here we show that vascular endothelial growth factor (VEGF; also known as vascular permeability factor) probably functions as a hypoxia-inducible angiogenic factor. VEGF messenger RNA levels are dramatically increased within a few hours of exposing different cell cultures to hypoxia and return to background when normal oxygen supply is resumed. In situ analysis of tumour specimens undergoing neovascularization show that the production of VEGF is specifically induced in a subset of glioblastoma cells distinguished by their immediate proximity to necrotic foci (presumably hypoxic regions) and the clustering of capillaries alongside VEGF-producing cells.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N11337bf18d5c4dfb80dda6e593ffc5a2
    28 N3ab7952450214283a27ac1a085220c6b
    29 sg:journal.1018957
    30 schema:name Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis
    31 schema:pagination 843-845
    32 schema:productId N4e09907246954badb52c9e5c79ee377b
    33 N70747c3022f6480c9048f9e3c57ca4b1
    34 N81c1b6fc60d04050b844552bf5a17f1e
    35 Nebc37b2bde134d398e3ecc8664d1d4e3
    36 Nef4d93df93764c54a88c8ca644f085fa
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028884048
    38 https://doi.org/10.1038/359843a0
    39 schema:sdDatePublished 2019-04-11T00:55
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nc7bfe034e4004283a28987600dc79ac0
    42 schema:url http://www.nature.com/nature/journal/v359/n6398/full/359843a0.html
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N08185bcdb6d94dc181e3cee5d32679c4 rdf:first sg:person.0760603150.60
    47 rdf:rest N3d0aef8b5d15424aa5be9e348dcea47c
    48 N092af606e5554491bd32fc27b96d9d51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    49 schema:name Cell Division
    50 rdf:type schema:DefinedTerm
    51 N11337bf18d5c4dfb80dda6e593ffc5a2 schema:issueNumber 6398
    52 rdf:type schema:PublicationIssue
    53 N115658ddef3b4640b30f2f80f6696a84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    54 schema:name Endothelial Growth Factors
    55 rdf:type schema:DefinedTerm
    56 N1d326fb4b4b444f881a99e55e457a74a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    57 schema:name Rats
    58 rdf:type schema:DefinedTerm
    59 N2e70aeb0dc2b4f8b9bfd65968321f58d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    60 schema:name Animals
    61 rdf:type schema:DefinedTerm
    62 N2f8fd89e15ad484888f6d870966d6ffc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    63 schema:name Lymphokines
    64 rdf:type schema:DefinedTerm
    65 N3ab7952450214283a27ac1a085220c6b schema:volumeNumber 359
    66 rdf:type schema:PublicationVolume
    67 N3d0aef8b5d15424aa5be9e348dcea47c rdf:first Nee1e8263916348ae97f8851b6d5009e1
    68 rdf:rest N3d3e4f6fb2304270b1f03706021968b8
    69 N3d3e4f6fb2304270b1f03706021968b8 rdf:first sg:person.0623317475.69
    70 rdf:rest rdf:nil
    71 N43b282d2ccdd4b4491446cd02a3455dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Glioblastoma
    73 rdf:type schema:DefinedTerm
    74 N4caa2f2f626c48e99077f4e5e8707f28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name RNA, Messenger
    76 rdf:type schema:DefinedTerm
    77 N4e09907246954badb52c9e5c79ee377b schema:name readcube_id
    78 schema:value 8998cfcb28585b2c47fd5be8cdfee637681eeaf94fe544b02b5b202954848afc
    79 rdf:type schema:PropertyValue
    80 N4f2b12839c83436c80d9d78eb4f7eaad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Endothelium, Vascular
    82 rdf:type schema:DefinedTerm
    83 N5db4a1c4c42d406bb92dfaae352580b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Humans
    85 rdf:type schema:DefinedTerm
    86 N706aadd50d044c55ab0c44e722a907b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Vascular Endothelial Growth Factors
    88 rdf:type schema:DefinedTerm
    89 N70747c3022f6480c9048f9e3c57ca4b1 schema:name pubmed_id
    90 schema:value 1279431
    91 rdf:type schema:PropertyValue
    92 N7877675183994626b77b849c860954b5 rdf:first sg:person.0712467750.87
    93 rdf:rest N08185bcdb6d94dc181e3cee5d32679c4
    94 N819a6426304a4fb6b30383753c36a827 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Cell Hypoxia
    96 rdf:type schema:DefinedTerm
    97 N81c1b6fc60d04050b844552bf5a17f1e schema:name doi
    98 schema:value 10.1038/359843a0
    99 rdf:type schema:PropertyValue
    100 N8632cf3ea2c942f19a91ec4ff9b97ae7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Vascular Endothelial Growth Factor A
    102 rdf:type schema:DefinedTerm
    103 N99c694e80103408d99cbd7d5f293ffda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Tumor Cells, Cultured
    105 rdf:type schema:DefinedTerm
    106 N9c0be2a91d754be894af3a6745b3512a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name RNA, Neoplasm
    108 rdf:type schema:DefinedTerm
    109 Na2d121dc00cc4d92926b42c3281c49ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Neovascularization, Pathologic
    111 rdf:type schema:DefinedTerm
    112 Nc7bfe034e4004283a28987600dc79ac0 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 Nd6e5e98b2e9c4e0586f28b113db75506 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Necrosis
    116 rdf:type schema:DefinedTerm
    117 Ne120527b80d74781a21be4b07d2047cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Brain Neoplasms
    119 rdf:type schema:DefinedTerm
    120 Nebc37b2bde134d398e3ecc8664d1d4e3 schema:name nlm_unique_id
    121 schema:value 0410462
    122 rdf:type schema:PropertyValue
    123 Nee1e8263916348ae97f8851b6d5009e1 schema:familyName Soffer
    124 schema:givenName D
    125 rdf:type schema:Person
    126 Nef4d93df93764c54a88c8ca644f085fa schema:name dimensions_id
    127 schema:value pub.1028884048
    128 rdf:type schema:PropertyValue
    129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Biological Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Biochemistry and Cell Biology
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1018957 schema:issn 0090-0028
    136 1476-4687
    137 schema:name Nature
    138 rdf:type schema:Periodical
    139 sg:person.0623317475.69 schema:familyName Keshet
    140 schema:givenName E
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623317475.69
    142 rdf:type schema:Person
    143 sg:person.0712467750.87 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
    144 schema:familyName Shweiki
    145 schema:givenName D
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712467750.87
    147 rdf:type schema:Person
    148 sg:person.0760603150.60 schema:familyName Itin
    149 schema:givenName A
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760603150.60
    151 rdf:type schema:Person
    152 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
    153 schema:name Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...