DNA-templated assembly and electrode attachment of a conducting silver wire View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-02

AUTHORS

Erez Braun, Yoav Eichen, Uri Sivan, Gdalyahu Ben-Yoseph

ABSTRACT

Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular to submicrometre quantum dots and on the electrical transport in carbon nanotubes have confirmed theoretical predictions of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition and mechanical properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 microm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires. More... »

PAGES

775

Journal

TITLE

Nature

ISSUE

6669

VOLUME

391

Related Patents

  • Method Of Attaching Hydrophilic Species To Hydrophilic Macromolecules And Immobilizing The Hydrophilic Macromolecules On A Hydrophobic Surface
  • Nanowire Structures And Electrical Devices
  • Biosensor Array Formed By Junctions Of Functionalized Electrodes
  • Metal Coated Virus-Based Nanoelectrodes And Method Of Assembling Of Same
  • Self-Assembling Oligonucleotides And Methods
  • Scaffold-Organized Clusters And Electronic Devices Made Using Such Clusters
  • Scaffold-Organized Metal, Alloy, Semiconductor And/Or Magnetic Clusters And Electronic Devices Made Using Such Clusters
  • Enzymatic Encoding Methods For Efficient Synthesis Of Large Libraries
  • Scaffold-Organized Clusters And Electronic Devices Made Using Such Clusters
  • Method For The Synthesis Of A Bifunctional Complex
  • Self Assembled Nano-Devices Using Dna
  • Method For Gold Deposition
  • Nano-Scale Biosensors
  • Ligational Encoding Of Small Molecules
  • Method For The Synthesis Of A Bifunctional Complex
  • Quasirandom Structure And Function Guided Synthesis Methods
  • Methods For Fabricating Metal Nanowires
  • Nanoparticle Probes With Raman Spectroscopic Fingerprints For Analyte Detection
  • High Resolution Dna Detection Methods And Devices
  • Methods For Fabricating Metal Nanowires
  • Microelectronic Components And Electronic Networks Comprising Dna
  • Nucleic Acid-Engineered Materials
  • Chemically Assembled Nano-Scale Circuit Elements
  • Method For Synthesising Templated Molecules
  • Method For The Synthesis Of A Bifunctional Complex
  • Method For Distinguishing Methicillin Resistant S. Aureus From Methicillin Sensitive S. Aureus In A Mixed Culture
  • Method For Distinguishing Methicillin Resistant S. Aureus From Methicillin Sensitive S. Aureus In A Mixed Culture
  • Electrical Sensor For Ultrasensitive Nucleic Acid Detection
  • Signal Activatable Constructs And Related Components Compositions Methods And Systems
  • Templated Molecules And Methods For Using Such Molecules
  • Ink Jet Printable Thick Film Compositions And Processes
  • Method Of Patterning Self-Organizing Material, Patterned Substrate Of Self-Organizing Material And Method Of Producing The Same, And Photomask Using Patterned Substrate Of Self-Organizing Material
  • Nano-Scale Biosensors
  • Nano-Scale Bridge Biosensors
  • Biopolymer-Mediated Assembly Of Nanoparticles Using Genetically Encoded Proteins
  • Process For Creating A 3-Dimensional Configuration On A Substrate
  • Affinity Sensor For Detecting Specific Molecular Binding Events And Use Thereof
  • Scaffold-Organized Clusters And Electronic Devices Made Using Such Clusters
  • Ferroelectric Storage Read-Write Memory
  • Nanoparticles With Polymer Shells
  • Complexes Of Nucleic Acid Molecules And Metals
  • Hydrogen Gas Sensor
  • Biopolymer-Mediated Assembly Of Nanoparticles Using Genetically Encoded Proteins
  • Method For Selecting A Chemical Entity From A Tagged Library
  • Method For The Synthesis Of A Bifunctional Complex
  • High Resolution Dna Detection Methods And Devices
  • Method For Gold Deposition
  • Ligational Encoding Using Building Block Oligonucleotides
  • Templated Molecules And Methods For Using Such Molecules
  • Electrical Sensor For Ultrasensitive Nucleic Acid Detection
  • Method For Synthesising Templated Molecules
  • Biologically Active Metal-Containing Nucleic Acids
  • Methods For Fabricating Metal Nanowires
  • Method For Gold Deposition
  • Bioconjugate-Nanoparticle Probes
  • Scaffold-Organized Clusters And Electronic Made Using Such Clusters
  • Apparatus, System, And Method For Dna Shadow Nanolithography
  • Method And Biosensors For Detecting Macromolecular Biopolymers
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/35826

    DOI

    http://dx.doi.org/10.1038/35826

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022704048

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9486645


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electric Conductivity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Silver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Templates, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "*Department of Physics, Haifa 32000, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Braun", 
            "givenName": "Erez", 
            "id": "sg:person.0762513623.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762513623.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "\u2020Department of Chemistry, Haifa 32000, Israel", 
                "\u2021Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eichen", 
            "givenName": "Yoav", 
            "id": "sg:person.01072765043.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072765043.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "*Department of Physics, Haifa 32000, Israel", 
                "\u2021Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sivan", 
            "givenName": "Uri", 
            "id": "sg:person.07701147325.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07701147325.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "*Department of Physics, Haifa 32000, Israel", 
                "\u2021Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ben-Yoseph", 
            "givenName": "Gdalyahu", 
            "id": "sg:person.01204404355.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204404355.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1177/31.7.6189883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000506904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/31.7.6189883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000506904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2166-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001641044", 
              "https://doi.org/10.1007/978-1-4757-2166-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2166-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001641044", 
              "https://doi.org/10.1007/978-1-4757-2166-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.7522347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005708707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/22.3.492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006671522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386474a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007355361", 
              "https://doi.org/10.1038/386474a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-444-88454-1.50012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010994809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382609a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013811778", 
              "https://doi.org/10.1038/382609a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/34.3.3950384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016882811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/34.3.3950384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016882811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027340399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027340399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/347539a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028275474", 
              "https://doi.org/10.1038/347539a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382607a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030717946", 
              "https://doi.org/10.1038/382607a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/11/3/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038836098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382731a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043910535", 
              "https://doi.org/10.1038/382731a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338520a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049468419", 
              "https://doi.org/10.1038/338520a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00450a066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055733536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.117126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057681334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.364096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057990162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.364275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057990453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.881674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058127165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.2436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.2436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.64.849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.64.849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5274.475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.275.5308.1922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062556185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.277.5326.673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062557539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8511582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062656410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/3527607439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103257327"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-02", 
        "datePublishedReg": "1998-02-01", 
        "description": "Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular to submicrometre quantum dots and on the electrical transport in carbon nanotubes have confirmed theoretical predictions of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition and mechanical properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 microm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/35826", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6669", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "391"
          }
        ], 
        "name": "DNA-templated assembly and electrode attachment of a conducting silver wire", 
        "pagination": "775", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c2a28b85e6ef2b725d0e26aadd4d49a0c5e12e77e91554dba332f5e2d66541b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9486645"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/35826"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022704048"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/35826", 
          "https://app.dimensions.ai/details/publication/pub.1022704048"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53987_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/35826"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/35826'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/35826'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/35826'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/35826'


     

    This table displays all metadata directly associated to this object as RDF triples.

    214 TRIPLES      21 PREDICATES      64 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/35826 schema:about N345ee06ad7b449c499a768ea0865f218
    2 N41e16572c63a440ea0974f8fe0f20fe7
    3 N62e25eec112c4326a59441c3d1520005
    4 N9cbce097d6f846e4a663dc29a664c07b
    5 Ncba0ae9b18634d408489cd96fff874c9
    6 Ncd72572c27234119b44cea3dcaffdca8
    7 Nd19a7aa841aa4e80bcb33a9b115099fd
    8 Nd76d0593df2b4ced8acdbf5cffbee2ee
    9 anzsrc-for:03
    10 anzsrc-for:0303
    11 schema:author Neb0448e80d9f491ab33137484b1ec7fd
    12 schema:citation sg:pub.10.1007/978-1-4757-2166-9
    13 sg:pub.10.1038/338520a0
    14 sg:pub.10.1038/347539a0
    15 sg:pub.10.1038/382607a0
    16 sg:pub.10.1038/382609a0
    17 sg:pub.10.1038/382731a0
    18 sg:pub.10.1038/386474a0
    19 https://doi.org/10.1002/3527607439
    20 https://doi.org/10.1016/b978-0-444-88454-1.50012-7
    21 https://doi.org/10.1021/ja00450a066
    22 https://doi.org/10.1063/1.117126
    23 https://doi.org/10.1063/1.364096
    24 https://doi.org/10.1063/1.364275
    25 https://doi.org/10.1063/1.881674
    26 https://doi.org/10.1088/0268-1242/11/3/003
    27 https://doi.org/10.1093/nar/22.3.492
    28 https://doi.org/10.1103/physrevlett.74.4754
    29 https://doi.org/10.1103/physrevlett.75.2436
    30 https://doi.org/10.1103/physrevlett.76.479
    31 https://doi.org/10.1103/revmodphys.64.849
    32 https://doi.org/10.1126/science.273.5274.475
    33 https://doi.org/10.1126/science.275.5308.1922
    34 https://doi.org/10.1126/science.277.5326.673
    35 https://doi.org/10.1126/science.7522347
    36 https://doi.org/10.1126/science.8511582
    37 https://doi.org/10.1177/31.7.6189883
    38 https://doi.org/10.1177/34.3.3950384
    39 schema:datePublished 1998-02
    40 schema:datePublishedReg 1998-02-01
    41 schema:description Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular to submicrometre quantum dots and on the electrical transport in carbon nanotubes have confirmed theoretical predictions of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition and mechanical properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 microm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N5159bed59fe74e6282065255e71788d1
    46 Nb1c13669b1984d0e90e16bdb88d346af
    47 sg:journal.1018957
    48 schema:name DNA-templated assembly and electrode attachment of a conducting silver wire
    49 schema:pagination 775
    50 schema:productId N289b2c8bf8c94834afc8fce2968f5207
    51 N45caeccdfd3c422eb00fccc11f51a55e
    52 N7ca5514cf47548cda84e70ad68366964
    53 Na624199d0466452a9c5b1dc333e0a2b3
    54 Ne7f4e391fbad44b7881594704b09ed4d
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022704048
    56 https://doi.org/10.1038/35826
    57 schema:sdDatePublished 2019-04-11T12:12
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Nab830d5b331747c2947101203556074c
    60 schema:url https://www.nature.com/articles/35826
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N1dfa440472d34d049999bdb037902edd rdf:first sg:person.01204404355.24
    65 rdf:rest rdf:nil
    66 N289b2c8bf8c94834afc8fce2968f5207 schema:name nlm_unique_id
    67 schema:value 0410462
    68 rdf:type schema:PropertyValue
    69 N345ee06ad7b449c499a768ea0865f218 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Electric Conductivity
    71 rdf:type schema:DefinedTerm
    72 N41e16572c63a440ea0974f8fe0f20fe7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Silver
    74 rdf:type schema:DefinedTerm
    75 N45caeccdfd3c422eb00fccc11f51a55e schema:name pubmed_id
    76 schema:value 9486645
    77 rdf:type schema:PropertyValue
    78 N5159bed59fe74e6282065255e71788d1 schema:volumeNumber 391
    79 rdf:type schema:PublicationVolume
    80 N56b0741db40443708a828d4c852e75e2 rdf:first sg:person.07701147325.22
    81 rdf:rest N1dfa440472d34d049999bdb037902edd
    82 N62e25eec112c4326a59441c3d1520005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Templates, Genetic
    84 rdf:type schema:DefinedTerm
    85 N7ca5514cf47548cda84e70ad68366964 schema:name doi
    86 schema:value 10.1038/35826
    87 rdf:type schema:PropertyValue
    88 N993b7f9e9f73416dbcc52081c01aa766 rdf:first sg:person.01072765043.50
    89 rdf:rest N56b0741db40443708a828d4c852e75e2
    90 N9cbce097d6f846e4a663dc29a664c07b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Nucleic Acid Hybridization
    92 rdf:type schema:DefinedTerm
    93 Na624199d0466452a9c5b1dc333e0a2b3 schema:name dimensions_id
    94 schema:value pub.1022704048
    95 rdf:type schema:PropertyValue
    96 Nab830d5b331747c2947101203556074c schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Nafaf757782394e6db1f1dea8c21b51ce schema:name *Department of Physics, Haifa 32000, Israel
    99 rdf:type schema:Organization
    100 Nb1c13669b1984d0e90e16bdb88d346af schema:issueNumber 6669
    101 rdf:type schema:PublicationIssue
    102 Ncba0ae9b18634d408489cd96fff874c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Electrodes
    104 rdf:type schema:DefinedTerm
    105 Ncd72572c27234119b44cea3dcaffdca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Microscopy, Atomic Force
    107 rdf:type schema:DefinedTerm
    108 Nd19a7aa841aa4e80bcb33a9b115099fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Electrochemistry
    110 rdf:type schema:DefinedTerm
    111 Nd76d0593df2b4ced8acdbf5cffbee2ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name DNA
    113 rdf:type schema:DefinedTerm
    114 Ne7f4e391fbad44b7881594704b09ed4d schema:name readcube_id
    115 schema:value 6c2a28b85e6ef2b725d0e26aadd4d49a0c5e12e77e91554dba332f5e2d66541b
    116 rdf:type schema:PropertyValue
    117 Neb0448e80d9f491ab33137484b1ec7fd rdf:first sg:person.0762513623.20
    118 rdf:rest N993b7f9e9f73416dbcc52081c01aa766
    119 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Chemical Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Macromolecular and Materials Chemistry
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1018957 schema:issn 0090-0028
    126 1476-4687
    127 schema:name Nature
    128 rdf:type schema:Periodical
    129 sg:person.01072765043.50 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    130 schema:familyName Eichen
    131 schema:givenName Yoav
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072765043.50
    133 rdf:type schema:Person
    134 sg:person.01204404355.24 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    135 schema:familyName Ben-Yoseph
    136 schema:givenName Gdalyahu
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204404355.24
    138 rdf:type schema:Person
    139 sg:person.0762513623.20 schema:affiliation Nafaf757782394e6db1f1dea8c21b51ce
    140 schema:familyName Braun
    141 schema:givenName Erez
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762513623.20
    143 rdf:type schema:Person
    144 sg:person.07701147325.22 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    145 schema:familyName Sivan
    146 schema:givenName Uri
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07701147325.22
    148 rdf:type schema:Person
    149 sg:pub.10.1007/978-1-4757-2166-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001641044
    150 https://doi.org/10.1007/978-1-4757-2166-9
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/338520a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049468419
    153 https://doi.org/10.1038/338520a0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/347539a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028275474
    156 https://doi.org/10.1038/347539a0
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
    159 https://doi.org/10.1038/382607a0
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
    162 https://doi.org/10.1038/382609a0
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/382731a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043910535
    165 https://doi.org/10.1038/382731a0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/386474a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007355361
    168 https://doi.org/10.1038/386474a0
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1002/3527607439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103257327
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/b978-0-444-88454-1.50012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010994809
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/ja00450a066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055733536
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1063/1.117126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057681334
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1063/1.364096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057990162
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1063/1.364275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057990453
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1063/1.881674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127165
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1088/0268-1242/11/3/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038836098
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1093/nar/22.3.492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006671522
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physrevlett.74.4754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811220
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevlett.75.2436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811818
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physrevlett.76.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027340399
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/revmodphys.64.849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839266
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1126/science.273.5274.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553699
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1126/science.275.5308.1922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556185
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1126/science.277.5326.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557539
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1126/science.7522347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005708707
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1126/science.8511582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062656410
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1177/31.7.6189883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000506904
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1177/34.3.3950384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016882811
    209 rdf:type schema:CreativeWork
    210 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
    211 schema:name *Department of Physics, Haifa 32000, Israel
    212 †Department of Chemistry, Haifa 32000, Israel
    213 ‡Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
    214 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...