Functional contacts of a transfer RNA synthetase with 2′-hydroxyl groups in the RNA minor groove View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-06

AUTHORS

K Musier-Forsyth, P Schimmel

ABSTRACT

The functional analysis of determinants on RNA has been largely limited to molecules that contain naturally occurring ribonucleotides, so little is known about the role of 2'-hydroxyl groups in protein-RNA recognition. A single base pair (G3.U70) in the acceptor stem of tRNA(Ala) is the principal element for specific recognition by Escherichia coli alanine-tRNA synthetase. This tRNA synthetase aminoacylates small RNA helices that contain the G3.U70 base pair. Furthermore, removal of the G3 exocyclic 2-amino group that projects into the minor groove eliminates aminoacylation. This 2-amino group is flanked on either side by ribose 2'-hydroxyl groups that line the minor groove. Here we use chemical synthesis to construct 32 helices that make deoxy and O-methyl substitutions of individual and multiple 2'-hydroxyl groups near and beyond the G3.U70 base pair and find that functional 2'-hydroxyl contacts are clustered within a few ångstroms of the critical 2-amino group. These contacts are highly specific and make a thermodynamically significant contribution to RNA recognition. More... »

PAGES

513-515

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/357513a0

DOI

http://dx.doi.org/10.1038/357513a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045387090

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1608452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alanine-tRNA Ligase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Structure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Ala", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Substrate Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biology, Massachusetts Institute of Technology, Cambridge 02139."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musier-Forsyth", 
        "givenName": "K", 
        "id": "sg:person.01263431330.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263431330.41"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schimmel", 
        "givenName": "P", 
        "id": "sg:person.0616041546.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616041546.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/335375a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010398537", 
          "https://doi.org/10.1038/335375a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.18.5433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018287770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299601a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036648503", 
          "https://doi.org/10.1038/299601a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/333140a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042620457", 
          "https://doi.org/10.1038/333140a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350628a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042881135", 
          "https://doi.org/10.1038/350628a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00099a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055160837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00108a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055161185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00108a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055161188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00230a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055166245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00759a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055187644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1546312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1876835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062511244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2452483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080012580", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-06", 
    "datePublishedReg": "1992-06-01", 
    "description": "The functional analysis of determinants on RNA has been largely limited to molecules that contain naturally occurring ribonucleotides, so little is known about the role of 2'-hydroxyl groups in protein-RNA recognition. A single base pair (G3.U70) in the acceptor stem of tRNA(Ala) is the principal element for specific recognition by Escherichia coli alanine-tRNA synthetase. This tRNA synthetase aminoacylates small RNA helices that contain the G3.U70 base pair. Furthermore, removal of the G3 exocyclic 2-amino group that projects into the minor groove eliminates aminoacylation. This 2-amino group is flanked on either side by ribose 2'-hydroxyl groups that line the minor groove. Here we use chemical synthesis to construct 32 helices that make deoxy and O-methyl substitutions of individual and multiple 2'-hydroxyl groups near and beyond the G3.U70 base pair and find that functional 2'-hydroxyl contacts are clustered within a few \u00e5ngstroms of the critical 2-amino group. These contacts are highly specific and make a thermodynamically significant contribution to RNA recognition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/357513a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6378", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "357"
      }
    ], 
    "name": "Functional contacts of a transfer RNA synthetase with 2\u2032-hydroxyl groups\nin the RNA minor groove", 
    "pagination": "513-515", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d832c12c86444e2af7dbff74c771458764c37b83eeeed311a564d586622fd24d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1608452"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/357513a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045387090"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/357513a0", 
      "https://app.dimensions.ai/details/publication/pub.1045387090"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/357513a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/357513a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/357513a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/357513a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/357513a0'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      55 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/357513a0 schema:about N2a02ea1b44a4482fb3b8b333daba7d5d
2 N2f5964bd256b48a7b6a308605eb8f6ee
3 N360bee30cd7348b4b6e365d512d6b1d8
4 N491a39b464f146d4b5f7045659c30ae3
5 N4bdbcef376dd4d51bd7242aab429b5fb
6 N6a52a53bb9da4ed394c04121eaa75d8b
7 Na983c35aa6974cdbb744b6971f38d340
8 Nb39ef2ac75df4fe7b1e3dae23375747c
9 Nba8d823e884b4af8a649f53e7754ae4a
10 Nc0dcbf4b7bac4e5e95df10c060aee8f8
11 Nc16d28f9547e475cafe867c942301239
12 Neabc6947e40348eca860c1ca7b96923c
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N389d6e09dcb5480e91b8263c8cf10d07
16 schema:citation sg:pub.10.1038/299601a0
17 sg:pub.10.1038/333140a0
18 sg:pub.10.1038/335375a0
19 sg:pub.10.1038/350628a0
20 https://app.dimensions.ai/details/publication/pub.1080012580
21 https://doi.org/10.1021/bi00099a003
22 https://doi.org/10.1021/bi00108a002
23 https://doi.org/10.1021/bi00108a005
24 https://doi.org/10.1021/bi00230a029
25 https://doi.org/10.1021/bi00759a006
26 https://doi.org/10.1093/nar/18.18.5433
27 https://doi.org/10.1126/science.1546312
28 https://doi.org/10.1126/science.1876835
29 https://doi.org/10.1126/science.2452483
30 schema:datePublished 1992-06
31 schema:datePublishedReg 1992-06-01
32 schema:description The functional analysis of determinants on RNA has been largely limited to molecules that contain naturally occurring ribonucleotides, so little is known about the role of 2'-hydroxyl groups in protein-RNA recognition. A single base pair (G3.U70) in the acceptor stem of tRNA(Ala) is the principal element for specific recognition by Escherichia coli alanine-tRNA synthetase. This tRNA synthetase aminoacylates small RNA helices that contain the G3.U70 base pair. Furthermore, removal of the G3 exocyclic 2-amino group that projects into the minor groove eliminates aminoacylation. This 2-amino group is flanked on either side by ribose 2'-hydroxyl groups that line the minor groove. Here we use chemical synthesis to construct 32 helices that make deoxy and O-methyl substitutions of individual and multiple 2'-hydroxyl groups near and beyond the G3.U70 base pair and find that functional 2'-hydroxyl contacts are clustered within a few ångstroms of the critical 2-amino group. These contacts are highly specific and make a thermodynamically significant contribution to RNA recognition.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N77aec95064ee48e8b4b4565cd38179a1
37 N86aad22b738a4103abfffc7b480327a6
38 sg:journal.1018957
39 schema:name Functional contacts of a transfer RNA synthetase with 2′-hydroxyl groups in the RNA minor groove
40 schema:pagination 513-515
41 schema:productId N63ed7af26b964c899da1fe266e68abb7
42 N9193db57b00a42d8b24f07112da824c6
43 Nd422a90357b1452bb34ee8eea166b800
44 Nd7a11398948849b2a36f40b5bd800983
45 Ne5bab779be394ae1a81e4ee0aef6a93e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045387090
47 https://doi.org/10.1038/357513a0
48 schema:sdDatePublished 2019-04-10T15:39
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nedcab88c6ac740abb5eab048c0a526da
51 schema:url http://www.nature.com/articles/357513a0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N2a02ea1b44a4482fb3b8b333daba7d5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Base Sequence
57 rdf:type schema:DefinedTerm
58 N2f5964bd256b48a7b6a308605eb8f6ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name RNA, Transfer, Ala
60 rdf:type schema:DefinedTerm
61 N360bee30cd7348b4b6e365d512d6b1d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Molecular Sequence Data
63 rdf:type schema:DefinedTerm
64 N389d6e09dcb5480e91b8263c8cf10d07 rdf:first sg:person.01263431330.41
65 rdf:rest N9674234a7ba740f3b7c098b3f43fd1db
66 N491a39b464f146d4b5f7045659c30ae3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Escherichia coli
68 rdf:type schema:DefinedTerm
69 N4bdbcef376dd4d51bd7242aab429b5fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Substrate Specificity
71 rdf:type schema:DefinedTerm
72 N63ed7af26b964c899da1fe266e68abb7 schema:name readcube_id
73 schema:value d832c12c86444e2af7dbff74c771458764c37b83eeeed311a564d586622fd24d
74 rdf:type schema:PropertyValue
75 N6a52a53bb9da4ed394c04121eaa75d8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Alanine-tRNA Ligase
77 rdf:type schema:DefinedTerm
78 N77aec95064ee48e8b4b4565cd38179a1 schema:issueNumber 6378
79 rdf:type schema:PublicationIssue
80 N86aad22b738a4103abfffc7b480327a6 schema:volumeNumber 357
81 rdf:type schema:PublicationVolume
82 N9193db57b00a42d8b24f07112da824c6 schema:name dimensions_id
83 schema:value pub.1045387090
84 rdf:type schema:PropertyValue
85 N9674234a7ba740f3b7c098b3f43fd1db rdf:first sg:person.0616041546.84
86 rdf:rest rdf:nil
87 Na983c35aa6974cdbb744b6971f38d340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Thermodynamics
89 rdf:type schema:DefinedTerm
90 Nb39ef2ac75df4fe7b1e3dae23375747c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Molecular
92 rdf:type schema:DefinedTerm
93 Nba8d823e884b4af8a649f53e7754ae4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Base Composition
95 rdf:type schema:DefinedTerm
96 Nc0dcbf4b7bac4e5e95df10c060aee8f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Binding Sites
98 rdf:type schema:DefinedTerm
99 Nc16d28f9547e475cafe867c942301239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Molecular Structure
101 rdf:type schema:DefinedTerm
102 Nd422a90357b1452bb34ee8eea166b800 schema:name doi
103 schema:value 10.1038/357513a0
104 rdf:type schema:PropertyValue
105 Nd7a11398948849b2a36f40b5bd800983 schema:name pubmed_id
106 schema:value 1608452
107 rdf:type schema:PropertyValue
108 Ne5bab779be394ae1a81e4ee0aef6a93e schema:name nlm_unique_id
109 schema:value 0410462
110 rdf:type schema:PropertyValue
111 Neabc6947e40348eca860c1ca7b96923c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Nucleic Acid Conformation
113 rdf:type schema:DefinedTerm
114 Nedcab88c6ac740abb5eab048c0a526da schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
120 schema:name Genetics
121 rdf:type schema:DefinedTerm
122 sg:journal.1018957 schema:issn 0090-0028
123 1476-4687
124 schema:name Nature
125 rdf:type schema:Periodical
126 sg:person.01263431330.41 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
127 schema:familyName Musier-Forsyth
128 schema:givenName K
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263431330.41
130 rdf:type schema:Person
131 sg:person.0616041546.84 schema:familyName Schimmel
132 schema:givenName P
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616041546.84
134 rdf:type schema:Person
135 sg:pub.10.1038/299601a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036648503
136 https://doi.org/10.1038/299601a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/333140a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042620457
139 https://doi.org/10.1038/333140a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/335375a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010398537
142 https://doi.org/10.1038/335375a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/350628a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042881135
145 https://doi.org/10.1038/350628a0
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1080012580 schema:CreativeWork
148 https://doi.org/10.1021/bi00099a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055160837
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/bi00108a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055161185
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/bi00108a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055161188
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/bi00230a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055166245
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/bi00759a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055187644
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/nar/18.18.5433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018287770
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1546312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490319
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1876835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062511244
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.2452483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538399
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
167 schema:name Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...