Functional contacts of a transfer RNA synthetase with 2′-hydroxyl groups in the RNA minor groove View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-06

AUTHORS

K Musier-Forsyth, P Schimmel

ABSTRACT

The functional analysis of determinants on RNA has been largely limited to molecules that contain naturally occurring ribonucleotides, so little is known about the role of 2'-hydroxyl groups in protein-RNA recognition. A single base pair (G3.U70) in the acceptor stem of tRNA(Ala) is the principal element for specific recognition by Escherichia coli alanine-tRNA synthetase. This tRNA synthetase aminoacylates small RNA helices that contain the G3.U70 base pair. Furthermore, removal of the G3 exocyclic 2-amino group that projects into the minor groove eliminates aminoacylation. This 2-amino group is flanked on either side by ribose 2'-hydroxyl groups that line the minor groove. Here we use chemical synthesis to construct 32 helices that make deoxy and O-methyl substitutions of individual and multiple 2'-hydroxyl groups near and beyond the G3.U70 base pair and find that functional 2'-hydroxyl contacts are clustered within a few ångstroms of the critical 2-amino group. These contacts are highly specific and make a thermodynamically significant contribution to RNA recognition. More... »

PAGES

513-515

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/357513a0

DOI

http://dx.doi.org/10.1038/357513a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045387090

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1608452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alanine-tRNA Ligase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Structure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Ala", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Substrate Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biology, Massachusetts Institute of Technology, Cambridge 02139."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musier-Forsyth", 
        "givenName": "K", 
        "id": "sg:person.01263431330.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263431330.41"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schimmel", 
        "givenName": "P", 
        "id": "sg:person.0616041546.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616041546.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/335375a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010398537", 
          "https://doi.org/10.1038/335375a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.18.5433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018287770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/299601a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036648503", 
          "https://doi.org/10.1038/299601a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/333140a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042620457", 
          "https://doi.org/10.1038/333140a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350628a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042881135", 
          "https://doi.org/10.1038/350628a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00099a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055160837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00108a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055161185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00108a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055161188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00230a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055166245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00759a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055187644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1546312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1876835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062511244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2452483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080012580", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-06", 
    "datePublishedReg": "1992-06-01", 
    "description": "The functional analysis of determinants on RNA has been largely limited to molecules that contain naturally occurring ribonucleotides, so little is known about the role of 2'-hydroxyl groups in protein-RNA recognition. A single base pair (G3.U70) in the acceptor stem of tRNA(Ala) is the principal element for specific recognition by Escherichia coli alanine-tRNA synthetase. This tRNA synthetase aminoacylates small RNA helices that contain the G3.U70 base pair. Furthermore, removal of the G3 exocyclic 2-amino group that projects into the minor groove eliminates aminoacylation. This 2-amino group is flanked on either side by ribose 2'-hydroxyl groups that line the minor groove. Here we use chemical synthesis to construct 32 helices that make deoxy and O-methyl substitutions of individual and multiple 2'-hydroxyl groups near and beyond the G3.U70 base pair and find that functional 2'-hydroxyl contacts are clustered within a few \u00e5ngstroms of the critical 2-amino group. These contacts are highly specific and make a thermodynamically significant contribution to RNA recognition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/357513a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6378", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "357"
      }
    ], 
    "name": "Functional contacts of a transfer RNA synthetase with 2\u2032-hydroxyl groups\nin the RNA minor groove", 
    "pagination": "513-515", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d832c12c86444e2af7dbff74c771458764c37b83eeeed311a564d586622fd24d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1608452"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/357513a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045387090"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/357513a0", 
      "https://app.dimensions.ai/details/publication/pub.1045387090"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/357513a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/357513a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/357513a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/357513a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/357513a0'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      55 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/357513a0 schema:about N35940018a1354b238d8745da63927ce2
2 N46d49a6d50b44dd3a48b0687c63fbd97
3 N50d2f47a60e544acaad5105a9bece5b4
4 N56f8dad93d66499a84293a4914ec3450
5 N8934d0c8e669407ba2dab570ab15b308
6 N8d7341289ac048b99e1bcf86bcc0bc66
7 N8f59c5687551407da0a2ccc0c93d9e03
8 N913d1583f0e64fca9c30a9db2a0f2c35
9 N976880416b5e49e7b9999b51f68e67d8
10 Ndabed134c80849c99671bbe30be9251e
11 Ne845d2c07c3b447daea9331ec78e473b
12 Nfa27ddc1f3a9473980d797fdbeb803c7
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N7642a68663c149639d5071f5af425715
16 schema:citation sg:pub.10.1038/299601a0
17 sg:pub.10.1038/333140a0
18 sg:pub.10.1038/335375a0
19 sg:pub.10.1038/350628a0
20 https://app.dimensions.ai/details/publication/pub.1080012580
21 https://doi.org/10.1021/bi00099a003
22 https://doi.org/10.1021/bi00108a002
23 https://doi.org/10.1021/bi00108a005
24 https://doi.org/10.1021/bi00230a029
25 https://doi.org/10.1021/bi00759a006
26 https://doi.org/10.1093/nar/18.18.5433
27 https://doi.org/10.1126/science.1546312
28 https://doi.org/10.1126/science.1876835
29 https://doi.org/10.1126/science.2452483
30 schema:datePublished 1992-06
31 schema:datePublishedReg 1992-06-01
32 schema:description The functional analysis of determinants on RNA has been largely limited to molecules that contain naturally occurring ribonucleotides, so little is known about the role of 2'-hydroxyl groups in protein-RNA recognition. A single base pair (G3.U70) in the acceptor stem of tRNA(Ala) is the principal element for specific recognition by Escherichia coli alanine-tRNA synthetase. This tRNA synthetase aminoacylates small RNA helices that contain the G3.U70 base pair. Furthermore, removal of the G3 exocyclic 2-amino group that projects into the minor groove eliminates aminoacylation. This 2-amino group is flanked on either side by ribose 2'-hydroxyl groups that line the minor groove. Here we use chemical synthesis to construct 32 helices that make deoxy and O-methyl substitutions of individual and multiple 2'-hydroxyl groups near and beyond the G3.U70 base pair and find that functional 2'-hydroxyl contacts are clustered within a few ångstroms of the critical 2-amino group. These contacts are highly specific and make a thermodynamically significant contribution to RNA recognition.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N94ee664cbf2f41dc832bb33b051e7e06
37 Ne887642aafbf45068879a425ac21d1fc
38 sg:journal.1018957
39 schema:name Functional contacts of a transfer RNA synthetase with 2′-hydroxyl groups in the RNA minor groove
40 schema:pagination 513-515
41 schema:productId N29ee821ba3dd4f028df6b50c55845f42
42 N7ce8dcdf4965430cae44911872dea2a8
43 N95e04bbd1ad24428b115c400dc4664a5
44 N9ccebc0c4d074e29a057fcc7f2720136
45 Ndd59bc8f5eb34bd1a46dd5c3b23bf5d7
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045387090
47 https://doi.org/10.1038/357513a0
48 schema:sdDatePublished 2019-04-10T15:39
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na885d1d15bb04d7b85b8605ba0c9633d
51 schema:url http://www.nature.com/articles/357513a0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N23080c13c11b40369c4a46c4e9fd1e71 rdf:first sg:person.0616041546.84
56 rdf:rest rdf:nil
57 N29ee821ba3dd4f028df6b50c55845f42 schema:name nlm_unique_id
58 schema:value 0410462
59 rdf:type schema:PropertyValue
60 N35940018a1354b238d8745da63927ce2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Base Sequence
62 rdf:type schema:DefinedTerm
63 N46d49a6d50b44dd3a48b0687c63fbd97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Binding Sites
65 rdf:type schema:DefinedTerm
66 N50d2f47a60e544acaad5105a9bece5b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Nucleic Acid Conformation
68 rdf:type schema:DefinedTerm
69 N56f8dad93d66499a84293a4914ec3450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Alanine-tRNA Ligase
71 rdf:type schema:DefinedTerm
72 N7642a68663c149639d5071f5af425715 rdf:first sg:person.01263431330.41
73 rdf:rest N23080c13c11b40369c4a46c4e9fd1e71
74 N7ce8dcdf4965430cae44911872dea2a8 schema:name doi
75 schema:value 10.1038/357513a0
76 rdf:type schema:PropertyValue
77 N8934d0c8e669407ba2dab570ab15b308 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name RNA, Transfer, Ala
79 rdf:type schema:DefinedTerm
80 N8d7341289ac048b99e1bcf86bcc0bc66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Molecular Sequence Data
82 rdf:type schema:DefinedTerm
83 N8f59c5687551407da0a2ccc0c93d9e03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Substrate Specificity
85 rdf:type schema:DefinedTerm
86 N913d1583f0e64fca9c30a9db2a0f2c35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Models, Molecular
88 rdf:type schema:DefinedTerm
89 N94ee664cbf2f41dc832bb33b051e7e06 schema:volumeNumber 357
90 rdf:type schema:PublicationVolume
91 N95e04bbd1ad24428b115c400dc4664a5 schema:name readcube_id
92 schema:value d832c12c86444e2af7dbff74c771458764c37b83eeeed311a564d586622fd24d
93 rdf:type schema:PropertyValue
94 N976880416b5e49e7b9999b51f68e67d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Thermodynamics
96 rdf:type schema:DefinedTerm
97 N9ccebc0c4d074e29a057fcc7f2720136 schema:name pubmed_id
98 schema:value 1608452
99 rdf:type schema:PropertyValue
100 Na885d1d15bb04d7b85b8605ba0c9633d schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Ndabed134c80849c99671bbe30be9251e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Base Composition
104 rdf:type schema:DefinedTerm
105 Ndd59bc8f5eb34bd1a46dd5c3b23bf5d7 schema:name dimensions_id
106 schema:value pub.1045387090
107 rdf:type schema:PropertyValue
108 Ne845d2c07c3b447daea9331ec78e473b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Escherichia coli
110 rdf:type schema:DefinedTerm
111 Ne887642aafbf45068879a425ac21d1fc schema:issueNumber 6378
112 rdf:type schema:PublicationIssue
113 Nfa27ddc1f3a9473980d797fdbeb803c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Molecular Structure
115 rdf:type schema:DefinedTerm
116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biological Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
120 schema:name Genetics
121 rdf:type schema:DefinedTerm
122 sg:journal.1018957 schema:issn 0090-0028
123 1476-4687
124 schema:name Nature
125 rdf:type schema:Periodical
126 sg:person.01263431330.41 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
127 schema:familyName Musier-Forsyth
128 schema:givenName K
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263431330.41
130 rdf:type schema:Person
131 sg:person.0616041546.84 schema:familyName Schimmel
132 schema:givenName P
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616041546.84
134 rdf:type schema:Person
135 sg:pub.10.1038/299601a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036648503
136 https://doi.org/10.1038/299601a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/333140a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042620457
139 https://doi.org/10.1038/333140a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/335375a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010398537
142 https://doi.org/10.1038/335375a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/350628a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042881135
145 https://doi.org/10.1038/350628a0
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1080012580 schema:CreativeWork
148 https://doi.org/10.1021/bi00099a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055160837
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/bi00108a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055161185
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/bi00108a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055161188
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/bi00230a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055166245
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/bi00759a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055187644
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/nar/18.18.5433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018287770
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1546312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490319
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1876835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062511244
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.2452483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538399
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
167 schema:name Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...