Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

G. Birkl, S. Kassner, H. Walther

ABSTRACT

THE possibility of creating ordered ion beams in high-energy storage rings1,2 by means of electron and laser cooling has opened up a new era in accelerator physics. The enhanced luminosity and suppressed momentum spread in such systems create the highest possible phase-space density. The first experimental results were obtained by cooling 7Li+ beams to temperatures of a few kelvin or even to sub-kelvin temperatures3,4, and the ordered structures have been studied theoretically5–7 by methods of molecular dynamics. Predicted configurations for the lowest ion densities have been observed in low-energy quadrupole storage rings8 and linear traps9. Recently we showed that at slightly higher ion densities helical structures are obtained10. Here we present a series of new experimental results on ordered ion structures in a quadrupole storage ring. In order of increasing ion number, a linear chain of ions, a zig-zag structure, helical structures and finally multiple concentric shells could be observed. The experimental results agree with molecular dynamics calculations. More... »

PAGES

310-313

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/357310a0

DOI

http://dx.doi.org/10.1038/357310a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004991385


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Birkl", 
        "givenName": "G.", 
        "id": "sg:person.015275546771.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275546771.50"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kassner", 
        "givenName": "S.", 
        "id": "sg:person.016670507771.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670507771.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Walther", 
        "givenName": "H.", 
        "id": "sg:person.010171277671.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010171277671.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09500349214550241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026988893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334309a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042949751", 
          "https://doi.org/10.1038/334309a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1658153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057736069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804319"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-05", 
    "datePublishedReg": "1992-05-01", 
    "description": "THE possibility of creating ordered ion beams in high-energy storage rings1,2 by means of electron and laser cooling has opened up a new era in accelerator physics. The enhanced luminosity and suppressed momentum spread in such systems create the highest possible phase-space density. The first experimental results were obtained by cooling 7Li+ beams to temperatures of a few kelvin or even to sub-kelvin temperatures3,4, and the ordered structures have been studied theoretically5\u20137 by methods of molecular dynamics. Predicted configurations for the lowest ion densities have been observed in low-energy quadrupole storage rings8 and linear traps9. Recently we showed that at slightly higher ion densities helical structures are obtained10. Here we present a series of new experimental results on ordered ion structures in a quadrupole storage ring. In order of increasing ion number, a linear chain of ions, a zig-zag structure, helical structures and finally multiple concentric shells could be observed. The experimental results agree with molecular dynamics calculations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/357310a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6376", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "357"
      }
    ], 
    "name": "Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole\nstorage ring", 
    "pagination": "310-313", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17c8d6f2c4344c2a60e0863d4e5fec4e41002fc0e1911be3dffc31fc7ddb3f75"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/357310a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004991385"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/357310a0", 
      "https://app.dimensions.ai/details/publication/pub.1004991385"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/357310a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/357310a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/357310a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/357310a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/357310a0'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/357310a0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N60da61306a5e404ba368644c0420c794
4 schema:citation sg:pub.10.1038/334309a0
5 https://doi.org/10.1063/1.1658153
6 https://doi.org/10.1080/09500349214550241
7 https://doi.org/10.1103/physrevlett.57.1133
8 https://doi.org/10.1103/physrevlett.59.2931
9 https://doi.org/10.1103/physrevlett.59.2935
10 https://doi.org/10.1103/physrevlett.60.2022
11 https://doi.org/10.1103/physrevlett.60.2484
12 https://doi.org/10.1103/physrevlett.64.2901
13 https://doi.org/10.1103/physrevlett.67.1238
14 https://doi.org/10.1103/physrevlett.68.2007
15 schema:datePublished 1992-05
16 schema:datePublishedReg 1992-05-01
17 schema:description THE possibility of creating ordered ion beams in high-energy storage rings1,2 by means of electron and laser cooling has opened up a new era in accelerator physics. The enhanced luminosity and suppressed momentum spread in such systems create the highest possible phase-space density. The first experimental results were obtained by cooling 7Li+ beams to temperatures of a few kelvin or even to sub-kelvin temperatures3,4, and the ordered structures have been studied theoretically5–7 by methods of molecular dynamics. Predicted configurations for the lowest ion densities have been observed in low-energy quadrupole storage rings8 and linear traps9. Recently we showed that at slightly higher ion densities helical structures are obtained10. Here we present a series of new experimental results on ordered ion structures in a quadrupole storage ring. In order of increasing ion number, a linear chain of ions, a zig-zag structure, helical structures and finally multiple concentric shells could be observed. The experimental results agree with molecular dynamics calculations.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N0db15970001145839cbc3bb6408b61e5
22 N9baf8d20a98443509589fdecc58fee40
23 sg:journal.1018957
24 schema:name Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring
25 schema:pagination 310-313
26 schema:productId N4288376bc2c94b47801851c901752ac3
27 N4506d486ac2c4acb8644bdf86c0f59a3
28 Nd560415e9f114d9782dd1cb2ce554b6c
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004991385
30 https://doi.org/10.1038/357310a0
31 schema:sdDatePublished 2019-04-10T13:55
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N146954d01e2f418e934bdb9fee00b11e
34 schema:url http://www.nature.com/articles/357310a0
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N09caaaadeb0a4e80a5b3fe5c15e7d267 rdf:first sg:person.016670507771.23
39 rdf:rest N83c2adaf0f0b494896614d25d55b8ec3
40 N0db15970001145839cbc3bb6408b61e5 schema:volumeNumber 357
41 rdf:type schema:PublicationVolume
42 N146954d01e2f418e934bdb9fee00b11e schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N4288376bc2c94b47801851c901752ac3 schema:name doi
45 schema:value 10.1038/357310a0
46 rdf:type schema:PropertyValue
47 N4506d486ac2c4acb8644bdf86c0f59a3 schema:name dimensions_id
48 schema:value pub.1004991385
49 rdf:type schema:PropertyValue
50 N60da61306a5e404ba368644c0420c794 rdf:first sg:person.015275546771.50
51 rdf:rest N09caaaadeb0a4e80a5b3fe5c15e7d267
52 N83c2adaf0f0b494896614d25d55b8ec3 rdf:first sg:person.010171277671.63
53 rdf:rest rdf:nil
54 N9baf8d20a98443509589fdecc58fee40 schema:issueNumber 6376
55 rdf:type schema:PublicationIssue
56 Nd560415e9f114d9782dd1cb2ce554b6c schema:name readcube_id
57 schema:value 17c8d6f2c4344c2a60e0863d4e5fec4e41002fc0e1911be3dffc31fc7ddb3f75
58 rdf:type schema:PropertyValue
59 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
60 schema:name Physical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
63 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
64 rdf:type schema:DefinedTerm
65 sg:journal.1018957 schema:issn 0090-0028
66 1476-4687
67 schema:name Nature
68 rdf:type schema:Periodical
69 sg:person.010171277671.63 schema:familyName Walther
70 schema:givenName H.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010171277671.63
72 rdf:type schema:Person
73 sg:person.015275546771.50 schema:familyName Birkl
74 schema:givenName G.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275546771.50
76 rdf:type schema:Person
77 sg:person.016670507771.23 schema:familyName Kassner
78 schema:givenName S.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670507771.23
80 rdf:type schema:Person
81 sg:pub.10.1038/334309a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042949751
82 https://doi.org/10.1038/334309a0
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1063/1.1658153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057736069
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1080/09500349214550241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026988893
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevlett.57.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793694
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.59.2931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796101
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevlett.59.2935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796102
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.60.2022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796943
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.60.2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797098
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.64.2901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800727
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.67.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803024
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.68.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804319
103 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...