Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

G. Birkl, S. Kassner, H. Walther

ABSTRACT

THE possibility of creating ordered ion beams in high-energy storage rings1,2 by means of electron and laser cooling has opened up a new era in accelerator physics. The enhanced luminosity and suppressed momentum spread in such systems create the highest possible phase-space density. The first experimental results were obtained by cooling 7Li+ beams to temperatures of a few kelvin or even to sub-kelvin temperatures3,4, and the ordered structures have been studied theoretically5–7 by methods of molecular dynamics. Predicted configurations for the lowest ion densities have been observed in low-energy quadrupole storage rings8 and linear traps9. Recently we showed that at slightly higher ion densities helical structures are obtained10. Here we present a series of new experimental results on ordered ion structures in a quadrupole storage ring. In order of increasing ion number, a linear chain of ions, a zig-zag structure, helical structures and finally multiple concentric shells could be observed. The experimental results agree with molecular dynamics calculations. More... »

PAGES

310-313

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/357310a0

DOI

http://dx.doi.org/10.1038/357310a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004991385


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Birkl", 
        "givenName": "G.", 
        "id": "sg:person.015275546771.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275546771.50"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kassner", 
        "givenName": "S.", 
        "id": "sg:person.016670507771.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670507771.23"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Walther", 
        "givenName": "H.", 
        "id": "sg:person.010171277671.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010171277671.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/09500349214550241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026988893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334309a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042949751", 
          "https://doi.org/10.1038/334309a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1658153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057736069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804319"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-05", 
    "datePublishedReg": "1992-05-01", 
    "description": "THE possibility of creating ordered ion beams in high-energy storage rings1,2 by means of electron and laser cooling has opened up a new era in accelerator physics. The enhanced luminosity and suppressed momentum spread in such systems create the highest possible phase-space density. The first experimental results were obtained by cooling 7Li+ beams to temperatures of a few kelvin or even to sub-kelvin temperatures3,4, and the ordered structures have been studied theoretically5\u20137 by methods of molecular dynamics. Predicted configurations for the lowest ion densities have been observed in low-energy quadrupole storage rings8 and linear traps9. Recently we showed that at slightly higher ion densities helical structures are obtained10. Here we present a series of new experimental results on ordered ion structures in a quadrupole storage ring. In order of increasing ion number, a linear chain of ions, a zig-zag structure, helical structures and finally multiple concentric shells could be observed. The experimental results agree with molecular dynamics calculations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/357310a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6376", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "357"
      }
    ], 
    "name": "Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole\nstorage ring", 
    "pagination": "310-313", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17c8d6f2c4344c2a60e0863d4e5fec4e41002fc0e1911be3dffc31fc7ddb3f75"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/357310a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004991385"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/357310a0", 
      "https://app.dimensions.ai/details/publication/pub.1004991385"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/357310a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/357310a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/357310a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/357310a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/357310a0'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/357310a0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nb83fbe58c40e47d2946fc414227d46b7
4 schema:citation sg:pub.10.1038/334309a0
5 https://doi.org/10.1063/1.1658153
6 https://doi.org/10.1080/09500349214550241
7 https://doi.org/10.1103/physrevlett.57.1133
8 https://doi.org/10.1103/physrevlett.59.2931
9 https://doi.org/10.1103/physrevlett.59.2935
10 https://doi.org/10.1103/physrevlett.60.2022
11 https://doi.org/10.1103/physrevlett.60.2484
12 https://doi.org/10.1103/physrevlett.64.2901
13 https://doi.org/10.1103/physrevlett.67.1238
14 https://doi.org/10.1103/physrevlett.68.2007
15 schema:datePublished 1992-05
16 schema:datePublishedReg 1992-05-01
17 schema:description THE possibility of creating ordered ion beams in high-energy storage rings1,2 by means of electron and laser cooling has opened up a new era in accelerator physics. The enhanced luminosity and suppressed momentum spread in such systems create the highest possible phase-space density. The first experimental results were obtained by cooling 7Li+ beams to temperatures of a few kelvin or even to sub-kelvin temperatures3,4, and the ordered structures have been studied theoretically5–7 by methods of molecular dynamics. Predicted configurations for the lowest ion densities have been observed in low-energy quadrupole storage rings8 and linear traps9. Recently we showed that at slightly higher ion densities helical structures are obtained10. Here we present a series of new experimental results on ordered ion structures in a quadrupole storage ring. In order of increasing ion number, a linear chain of ions, a zig-zag structure, helical structures and finally multiple concentric shells could be observed. The experimental results agree with molecular dynamics calculations.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N11c8fb67d0f0431a847497e9f5c8c902
22 Nabbb8291856d4b7e9383be89eaa6ec2e
23 sg:journal.1018957
24 schema:name Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring
25 schema:pagination 310-313
26 schema:productId N4485e92925254a67b40450cd09a5c45c
27 N5b1751101d6d4724b92aef272c20e76f
28 N80fe141ebf434bc3aeb357fcbd481cb4
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004991385
30 https://doi.org/10.1038/357310a0
31 schema:sdDatePublished 2019-04-10T13:55
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N4ea5b42c8db44160948b03f4d11db745
34 schema:url http://www.nature.com/articles/357310a0
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N11c8fb67d0f0431a847497e9f5c8c902 schema:volumeNumber 357
39 rdf:type schema:PublicationVolume
40 N4485e92925254a67b40450cd09a5c45c schema:name dimensions_id
41 schema:value pub.1004991385
42 rdf:type schema:PropertyValue
43 N4ea5b42c8db44160948b03f4d11db745 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N5b1751101d6d4724b92aef272c20e76f schema:name readcube_id
46 schema:value 17c8d6f2c4344c2a60e0863d4e5fec4e41002fc0e1911be3dffc31fc7ddb3f75
47 rdf:type schema:PropertyValue
48 N80fe141ebf434bc3aeb357fcbd481cb4 schema:name doi
49 schema:value 10.1038/357310a0
50 rdf:type schema:PropertyValue
51 N8e8b7d9f56e54b499cdb905669da679d rdf:first sg:person.010171277671.63
52 rdf:rest rdf:nil
53 N92416d980c4a4b5b8ea7ce31ca39f8f1 rdf:first sg:person.016670507771.23
54 rdf:rest N8e8b7d9f56e54b499cdb905669da679d
55 Nabbb8291856d4b7e9383be89eaa6ec2e schema:issueNumber 6376
56 rdf:type schema:PublicationIssue
57 Nb83fbe58c40e47d2946fc414227d46b7 rdf:first sg:person.015275546771.50
58 rdf:rest N92416d980c4a4b5b8ea7ce31ca39f8f1
59 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
60 schema:name Physical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
63 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
64 rdf:type schema:DefinedTerm
65 sg:journal.1018957 schema:issn 0090-0028
66 1476-4687
67 schema:name Nature
68 rdf:type schema:Periodical
69 sg:person.010171277671.63 schema:familyName Walther
70 schema:givenName H.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010171277671.63
72 rdf:type schema:Person
73 sg:person.015275546771.50 schema:familyName Birkl
74 schema:givenName G.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275546771.50
76 rdf:type schema:Person
77 sg:person.016670507771.23 schema:familyName Kassner
78 schema:givenName S.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670507771.23
80 rdf:type schema:Person
81 sg:pub.10.1038/334309a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042949751
82 https://doi.org/10.1038/334309a0
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1063/1.1658153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057736069
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1080/09500349214550241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026988893
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevlett.57.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793694
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.59.2931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796101
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevlett.59.2935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796102
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.60.2022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796943
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.60.2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797098
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.64.2901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800727
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.67.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803024
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.68.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804319
103 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...