Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

Antonio Malgaroli, Richard W. Tsien

ABSTRACT

Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals. More... »

PAGES

134-139

References to SciGraph publications

  • 1991-03. Quantal analysis of excitatory synaptic action and depression in hippocampal slices in NATURE
  • 1989-04. Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation in NATURE
  • 1991-03. Is maintenance of LTP presynaptic? in NATURE
  • 1987-01. Activation of protein kinase C augments evoked transmitter release in NATURE
  • 1991-03. LTP is a long term problem in NATURE
  • 1991-11. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses in NATURE
  • 1991-10. Quantal synaptic transmission? in NATURE
  • 1987-07. Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation in NATURE
  • 1991-01. NMDA receptor agonists selectively block N-type calcium channels in hippocampal neurons in NATURE
  • 1992-01. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents in NATURE
  • 1990-08. Presynaptic mechanism for long-term potentiation in the hippocampus in NATURE
  • 1970-02. Effects of Black Widow Spider Venom on the Frog Neuromuscular Junction: Effects on End-plate Potential, Miniature End-plate Potential and Nerve Terminal Spike in NATURE
  • 1982-06. Long-term potentiation of the perforant path in vivo is associated with increased glutamate release in NATURE
  • 1989-08. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation in NATURE
  • 1990-07. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices in NATURE
  • 1983-10. Intracellular injections of EGTA block induction of hippocampal long-term potentiation in NATURE
  • 1989-09. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/357134a0

    DOI

    http://dx.doi.org/10.1038/357134a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053313844

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1349728


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "6-Cyano-7-nitroquinoxaline-2,3-dione", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals, Newborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Calcium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evoked Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glutamates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glutamic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hippocampus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnesium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pyramidal Tracts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quinoxalines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, N-Methyl-D-Aspartate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tetrodotoxin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malgaroli", 
            "givenName": "Antonio", 
            "id": "sg:person.01117735515.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117735515.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsien", 
            "givenName": "Richard W.", 
            "id": "sg:person.011127405404.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127405404.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/355050a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046763887", 
              "https://doi.org/10.1038/355050a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/340554a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026556646", 
              "https://doi.org/10.1038/340554a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346724a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002891543", 
              "https://doi.org/10.1038/346724a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341230a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029176704", 
              "https://doi.org/10.1038/341230a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/305719a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053200360", 
              "https://doi.org/10.1038/305719a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/297496a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019538087", 
              "https://doi.org/10.1038/297496a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354073a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049279313", 
              "https://doi.org/10.1038/354073a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350271a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009500467", 
              "https://doi.org/10.1038/350271a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346177a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052184988", 
              "https://doi.org/10.1038/346177a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350344a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024235867", 
              "https://doi.org/10.1038/350344a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/325058a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001870786", 
              "https://doi.org/10.1038/325058a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353396a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043006552", 
              "https://doi.org/10.1038/353396a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/328426a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056438811", 
              "https://doi.org/10.1038/328426a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338500a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043890334", 
              "https://doi.org/10.1038/338500a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/225701a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048426419", 
              "https://doi.org/10.1038/225701a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350282a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026599854", 
              "https://doi.org/10.1038/350282a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/349418a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034101137", 
              "https://doi.org/10.1038/349418a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-05", 
        "datePublishedReg": "1992-05-01", 
        "description": "Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/357134a0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6374", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "357"
          }
        ], 
        "keywords": [
          "long-term potentiation", 
          "miniature synaptic currents", 
          "synaptic currents", 
          "hippocampal neurons", 
          "spontaneous miniature synaptic currents", 
          "glutamate-induced long-term potentiation", 
          "presynaptic transmitter release", 
          "glutamate receptor clusters", 
          "cultured hippocampal neurons", 
          "sustained potentiation", 
          "frequency potentiation", 
          "NMDA receptors", 
          "postsynaptic responsiveness", 
          "postsynaptic induction", 
          "transmitter release", 
          "glutamate application", 
          "presynaptic terminals", 
          "potentiation", 
          "mini frequency", 
          "absence of Ca2", 
          "receptor clusters", 
          "neurons", 
          "synapses", 
          "receptors", 
          "responsiveness", 
          "induction", 
          "Ca2", 
          "frequency", 
          "recruitment", 
          "release", 
          "response", 
          "absence", 
          "activity", 
          "test", 
          "entry", 
          "terminals", 
          "culture", 
          "amplitude", 
          "enhancement", 
          "current", 
          "clusters", 
          "applications", 
          "unitary quantum", 
          "quantum"
        ], 
        "name": "Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons", 
        "pagination": "134-139", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053313844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/357134a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1349728"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/357134a0", 
          "https://app.dimensions.ai/details/publication/pub.1053313844"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_246.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/357134a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/357134a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/357134a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/357134a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/357134a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    260 TRIPLES      21 PREDICATES      107 URIs      82 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/357134a0 schema:about N0954dc38f90f4643b44266578819e972
    2 N2588103e3e29431488fb850b957b0f4c
    3 N263bd1a34b0d4fb18bebd10fbd3ded83
    4 N29714f8e071c49aabf4f73ea2a53488a
    5 N2eea5e1843fb4807a5ff64e8a5b3a8bb
    6 N3cf24267b7a24149a7b87a2caee70f8c
    7 N3f431a1bd08f469b94cc694f6fd9f2fd
    8 N57048d48b7f74475b2658975233b55ac
    9 N5ed766f5767345cdae4b43225b65592b
    10 N60e6abdd2a544d4498d112beda33ee25
    11 N64f5d505a60b4aa0bb9a8834bb296573
    12 N7203fe4ee2ec4d2ea5f322b3ec50a672
    13 N78e0515807c742cdbdd424c34e5a3a32
    14 N7d54a6b38e614a7689ae8ffce4ab8f1d
    15 N8ce488b9087342cb9aa8e4b4df583f67
    16 N90672c9ad186417a84c8c1c8a9b488a9
    17 N96afebadb79a433cb4441508d3e1a2ee
    18 Na14317e7b753453cae338046e9bcbdb1
    19 Nd22a555681d14a74b6739e677eb6c4a7
    20 Nd7815b43f928464f8dba0547745b151a
    21 anzsrc-for:11
    22 anzsrc-for:1109
    23 schema:author N6a18fd0bf56847a5a58c1d9c2be29e27
    24 schema:citation sg:pub.10.1038/225701a0
    25 sg:pub.10.1038/297496a0
    26 sg:pub.10.1038/305719a0
    27 sg:pub.10.1038/325058a0
    28 sg:pub.10.1038/328426a0
    29 sg:pub.10.1038/338500a0
    30 sg:pub.10.1038/340554a0
    31 sg:pub.10.1038/341230a0
    32 sg:pub.10.1038/346177a0
    33 sg:pub.10.1038/346724a0
    34 sg:pub.10.1038/349418a0
    35 sg:pub.10.1038/350271a0
    36 sg:pub.10.1038/350282a0
    37 sg:pub.10.1038/350344a0
    38 sg:pub.10.1038/353396a0
    39 sg:pub.10.1038/354073a0
    40 sg:pub.10.1038/355050a0
    41 schema:datePublished 1992-05
    42 schema:datePublishedReg 1992-05-01
    43 schema:description Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.
    44 schema:genre article
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N43754c3b4fb94533a28b9e2b49469f4d
    47 Nc36096fd0e9e479b8ad6397ff90d2ecf
    48 sg:journal.1018957
    49 schema:keywords Ca2
    50 NMDA receptors
    51 absence
    52 absence of Ca2
    53 activity
    54 amplitude
    55 applications
    56 clusters
    57 culture
    58 cultured hippocampal neurons
    59 current
    60 enhancement
    61 entry
    62 frequency
    63 frequency potentiation
    64 glutamate application
    65 glutamate receptor clusters
    66 glutamate-induced long-term potentiation
    67 hippocampal neurons
    68 induction
    69 long-term potentiation
    70 mini frequency
    71 miniature synaptic currents
    72 neurons
    73 postsynaptic induction
    74 postsynaptic responsiveness
    75 potentiation
    76 presynaptic terminals
    77 presynaptic transmitter release
    78 quantum
    79 receptor clusters
    80 receptors
    81 recruitment
    82 release
    83 response
    84 responsiveness
    85 spontaneous miniature synaptic currents
    86 sustained potentiation
    87 synapses
    88 synaptic currents
    89 terminals
    90 test
    91 transmitter release
    92 unitary quantum
    93 schema:name Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons
    94 schema:pagination 134-139
    95 schema:productId N39e7856f02eb4df495869813b404a9fc
    96 N4e18c52239a04c0dbec5e94eca7196ba
    97 Nbc84048d7e8e4bc78314a41bfdc8344e
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053313844
    99 https://doi.org/10.1038/357134a0
    100 schema:sdDatePublished 2022-11-24T20:47
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N2413608931974fc3a2f2bbb25007b2f5
    103 schema:url https://doi.org/10.1038/357134a0
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N0954dc38f90f4643b44266578819e972 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Evoked Potentials
    109 rdf:type schema:DefinedTerm
    110 N2413608931974fc3a2f2bbb25007b2f5 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N2588103e3e29431488fb850b957b0f4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Calcium
    114 rdf:type schema:DefinedTerm
    115 N263bd1a34b0d4fb18bebd10fbd3ded83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Time Factors
    117 rdf:type schema:DefinedTerm
    118 N29714f8e071c49aabf4f73ea2a53488a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Glutamic Acid
    120 rdf:type schema:DefinedTerm
    121 N2eea5e1843fb4807a5ff64e8a5b3a8bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Neurons
    123 rdf:type schema:DefinedTerm
    124 N39e7856f02eb4df495869813b404a9fc schema:name pubmed_id
    125 schema:value 1349728
    126 rdf:type schema:PropertyValue
    127 N3cf24267b7a24149a7b87a2caee70f8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Membrane Potentials
    129 rdf:type schema:DefinedTerm
    130 N3f431a1bd08f469b94cc694f6fd9f2fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Quinoxalines
    132 rdf:type schema:DefinedTerm
    133 N43754c3b4fb94533a28b9e2b49469f4d schema:issueNumber 6374
    134 rdf:type schema:PublicationIssue
    135 N4e18c52239a04c0dbec5e94eca7196ba schema:name doi
    136 schema:value 10.1038/357134a0
    137 rdf:type schema:PropertyValue
    138 N57048d48b7f74475b2658975233b55ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Magnesium
    140 rdf:type schema:DefinedTerm
    141 N5ed766f5767345cdae4b43225b65592b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name 6-Cyano-7-nitroquinoxaline-2,3-dione
    143 rdf:type schema:DefinedTerm
    144 N60e6abdd2a544d4498d112beda33ee25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Tetrodotoxin
    146 rdf:type schema:DefinedTerm
    147 N64f5d505a60b4aa0bb9a8834bb296573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Hippocampus
    149 rdf:type schema:DefinedTerm
    150 N6a18fd0bf56847a5a58c1d9c2be29e27 rdf:first sg:person.01117735515.00
    151 rdf:rest N7583dd90203e4b449871ff825cc52960
    152 N7203fe4ee2ec4d2ea5f322b3ec50a672 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Cells, Cultured
    154 rdf:type schema:DefinedTerm
    155 N7583dd90203e4b449871ff825cc52960 rdf:first sg:person.011127405404.32
    156 rdf:rest rdf:nil
    157 N78e0515807c742cdbdd424c34e5a3a32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Animals
    159 rdf:type schema:DefinedTerm
    160 N7d54a6b38e614a7689ae8ffce4ab8f1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Rats
    162 rdf:type schema:DefinedTerm
    163 N8ce488b9087342cb9aa8e4b4df583f67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Receptors, N-Methyl-D-Aspartate
    165 rdf:type schema:DefinedTerm
    166 N90672c9ad186417a84c8c1c8a9b488a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Kinetics
    168 rdf:type schema:DefinedTerm
    169 N96afebadb79a433cb4441508d3e1a2ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Pyramidal Tracts
    171 rdf:type schema:DefinedTerm
    172 Na14317e7b753453cae338046e9bcbdb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Animals, Newborn
    174 rdf:type schema:DefinedTerm
    175 Nbc84048d7e8e4bc78314a41bfdc8344e schema:name dimensions_id
    176 schema:value pub.1053313844
    177 rdf:type schema:PropertyValue
    178 Nc36096fd0e9e479b8ad6397ff90d2ecf schema:volumeNumber 357
    179 rdf:type schema:PublicationVolume
    180 Nd22a555681d14a74b6739e677eb6c4a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Synapses
    182 rdf:type schema:DefinedTerm
    183 Nd7815b43f928464f8dba0547745b151a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Glutamates
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Medical and Health Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Neurosciences
    191 rdf:type schema:DefinedTerm
    192 sg:journal.1018957 schema:issn 0028-0836
    193 1476-4687
    194 schema:name Nature
    195 schema:publisher Springer Nature
    196 rdf:type schema:Periodical
    197 sg:person.011127405404.32 schema:affiliation grid-institutes:grid.240952.8
    198 schema:familyName Tsien
    199 schema:givenName Richard W.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127405404.32
    201 rdf:type schema:Person
    202 sg:person.01117735515.00 schema:affiliation grid-institutes:grid.240952.8
    203 schema:familyName Malgaroli
    204 schema:givenName Antonio
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117735515.00
    206 rdf:type schema:Person
    207 sg:pub.10.1038/225701a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048426419
    208 https://doi.org/10.1038/225701a0
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/297496a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019538087
    211 https://doi.org/10.1038/297496a0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/305719a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200360
    214 https://doi.org/10.1038/305719a0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/325058a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001870786
    217 https://doi.org/10.1038/325058a0
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/328426a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056438811
    220 https://doi.org/10.1038/328426a0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/338500a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043890334
    223 https://doi.org/10.1038/338500a0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/340554a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026556646
    226 https://doi.org/10.1038/340554a0
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/341230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176704
    229 https://doi.org/10.1038/341230a0
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/346177a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052184988
    232 https://doi.org/10.1038/346177a0
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/346724a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002891543
    235 https://doi.org/10.1038/346724a0
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/349418a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034101137
    238 https://doi.org/10.1038/349418a0
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/350271a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009500467
    241 https://doi.org/10.1038/350271a0
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/350282a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026599854
    244 https://doi.org/10.1038/350282a0
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/350344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024235867
    247 https://doi.org/10.1038/350344a0
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/353396a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043006552
    250 https://doi.org/10.1038/353396a0
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/354073a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279313
    253 https://doi.org/10.1038/354073a0
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/355050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046763887
    256 https://doi.org/10.1038/355050a0
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.240952.8 schema:alternateName Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA
    259 schema:name Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA
    260 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...