Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

Antonio Malgaroli, Richard W. Tsien

ABSTRACT

Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals. More... »

PAGES

134-139

References to SciGraph publications

  • 1991-03. Quantal analysis of excitatory synaptic action and depression in hippocampal slices in NATURE
  • 1991-03. LTP is a long term problem in NATURE
  • 1991-03. Is maintenance of LTP presynaptic? in NATURE
  • 1987-01. Activation of protein kinase C augments evoked transmitter release in NATURE
  • 1991-11. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses in NATURE
  • 1991-10. Quantal synaptic transmission? in NATURE
  • 1989-08. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation in NATURE
  • 1987-07. Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation in NATURE
  • 1991-01. NMDA receptor agonists selectively block N-type calcium channels in hippocampal neurons in NATURE
  • 1992-01. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents in NATURE
  • 1990-08. Presynaptic mechanism for long-term potentiation in the hippocampus in NATURE
  • 1970-02. Effects of Black Widow Spider Venom on the Frog Neuromuscular Junction: Effects on End-plate Potential, Miniature End-plate Potential and Nerve Terminal Spike in NATURE
  • 1982-06. Long-term potentiation of the perforant path in vivo is associated with increased glutamate release in NATURE
  • 1989-04. Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation in NATURE
  • 1990-07. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices in NATURE
  • 1983-10. Intracellular injections of EGTA block induction of hippocampal long-term potentiation in NATURE
  • 1989-09. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/357134a0

    DOI

    http://dx.doi.org/10.1038/357134a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053313844

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1349728


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "6-Cyano-7-nitroquinoxaline-2,3-dione", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals, Newborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Calcium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evoked Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glutamates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glutamic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hippocampus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnesium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Potentials", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pyramidal Tracts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quinoxalines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, N-Methyl-D-Aspartate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tetrodotoxin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malgaroli", 
            "givenName": "Antonio", 
            "id": "sg:person.01117735515.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117735515.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.240952.8", 
              "name": [
                "Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsien", 
            "givenName": "Richard W.", 
            "id": "sg:person.011127405404.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127405404.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/340554a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026556646", 
              "https://doi.org/10.1038/340554a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350271a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009500467", 
              "https://doi.org/10.1038/350271a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/305719a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053200360", 
              "https://doi.org/10.1038/305719a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346177a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052184988", 
              "https://doi.org/10.1038/346177a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350282a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026599854", 
              "https://doi.org/10.1038/350282a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/325058a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001870786", 
              "https://doi.org/10.1038/325058a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/297496a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019538087", 
              "https://doi.org/10.1038/297496a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354073a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049279313", 
              "https://doi.org/10.1038/354073a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350344a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024235867", 
              "https://doi.org/10.1038/350344a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/349418a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034101137", 
              "https://doi.org/10.1038/349418a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353396a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043006552", 
              "https://doi.org/10.1038/353396a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338500a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043890334", 
              "https://doi.org/10.1038/338500a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346724a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002891543", 
              "https://doi.org/10.1038/346724a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/355050a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046763887", 
              "https://doi.org/10.1038/355050a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341230a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029176704", 
              "https://doi.org/10.1038/341230a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/328426a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056438811", 
              "https://doi.org/10.1038/328426a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/225701a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048426419", 
              "https://doi.org/10.1038/225701a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-05", 
        "datePublishedReg": "1992-05-01", 
        "description": "Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/357134a0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6374", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "357"
          }
        ], 
        "keywords": [
          "long-term potentiation", 
          "miniature synaptic currents", 
          "synaptic currents", 
          "hippocampal neurons", 
          "spontaneous miniature synaptic currents", 
          "glutamate receptor clusters", 
          "presynaptic transmitter release", 
          "cultured hippocampal neurons", 
          "Glutamate-induced long-term potentiation", 
          "frequency potentiation", 
          "postsynaptic responsiveness", 
          "glutamate application", 
          "NMDA receptors", 
          "transmitter release", 
          "sustained potentiation", 
          "postsynaptic induction", 
          "presynaptic terminals", 
          "potentiation", 
          "mini frequency", 
          "absence of Ca2", 
          "receptor clusters", 
          "neurons", 
          "receptors", 
          "synapses", 
          "responsiveness", 
          "induction", 
          "frequency", 
          "Ca2", 
          "release", 
          "response", 
          "recruitment", 
          "absence", 
          "activity", 
          "test", 
          "entry", 
          "terminals", 
          "culture", 
          "amplitude", 
          "enhancement", 
          "current", 
          "clusters", 
          "applications", 
          "unitary quantum", 
          "quantum", 
          "mini frequency potentiation", 
          "latent glutamate receptor clusters"
        ], 
        "name": "Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons", 
        "pagination": "134-139", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053313844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/357134a0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1349728"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/357134a0", 
          "https://app.dimensions.ai/details/publication/pub.1053313844"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_253.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/357134a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/357134a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/357134a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/357134a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/357134a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      22 PREDICATES      110 URIs      85 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/357134a0 schema:about N0825e92290304cbab0d6933d59b61f6c
    2 N1b986219f67646d193a971a35a8c7c74
    3 N2120603b6a264f5aaa7f734f3a4055ac
    4 N2318e38363414bb5b9cb66cfffee38d9
    5 N261393a12bcc4199a57f01d078c98ca3
    6 N2f50af67a1d142b18ff66c2332332248
    7 N3ff3352c05544f6c880bbd461a0b5907
    8 N40ca4e27715141b3a077439ee68f359c
    9 N4618a1f81ab74719be3980b8c1dbcb62
    10 N53dfc718f69d4e2fa6add91b96636b20
    11 N84f6a4f9cefc49a18a3718249d37dc6e
    12 N9b43f9dae27f4893848a01590b253df8
    13 Na11b1881bba34dc0a696cbd29ac62e7c
    14 Na1646c4610994f56a271aaf8f99a5ddd
    15 Nafaa2392e3f64f289af40b8424f7729f
    16 Nb73737c369024e56b8ad57424c532941
    17 Nc1634a7c08d44f4d9b0c87a973a3b030
    18 Ncc4ccd179e71411aaf5e0de4f478407f
    19 Ncdadc0a37432476bb6be8bf5a260da00
    20 Nf3159d95e78a4158b73d0650f2da4f9b
    21 anzsrc-for:11
    22 anzsrc-for:1109
    23 schema:author Ndbf6b2bc329743c6b04bf61adbc26b4e
    24 schema:citation sg:pub.10.1038/225701a0
    25 sg:pub.10.1038/297496a0
    26 sg:pub.10.1038/305719a0
    27 sg:pub.10.1038/325058a0
    28 sg:pub.10.1038/328426a0
    29 sg:pub.10.1038/338500a0
    30 sg:pub.10.1038/340554a0
    31 sg:pub.10.1038/341230a0
    32 sg:pub.10.1038/346177a0
    33 sg:pub.10.1038/346724a0
    34 sg:pub.10.1038/349418a0
    35 sg:pub.10.1038/350271a0
    36 sg:pub.10.1038/350282a0
    37 sg:pub.10.1038/350344a0
    38 sg:pub.10.1038/353396a0
    39 sg:pub.10.1038/354073a0
    40 sg:pub.10.1038/355050a0
    41 schema:datePublished 1992-05
    42 schema:datePublishedReg 1992-05-01
    43 schema:description Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.
    44 schema:genre article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N68e262f6b10a4cc88ee741664e4c508a
    48 Ne6c07de4e9f9446783b5a128f295d3e4
    49 sg:journal.1018957
    50 schema:keywords Ca2
    51 Glutamate-induced long-term potentiation
    52 NMDA receptors
    53 absence
    54 absence of Ca2
    55 activity
    56 amplitude
    57 applications
    58 clusters
    59 culture
    60 cultured hippocampal neurons
    61 current
    62 enhancement
    63 entry
    64 frequency
    65 frequency potentiation
    66 glutamate application
    67 glutamate receptor clusters
    68 hippocampal neurons
    69 induction
    70 latent glutamate receptor clusters
    71 long-term potentiation
    72 mini frequency
    73 mini frequency potentiation
    74 miniature synaptic currents
    75 neurons
    76 postsynaptic induction
    77 postsynaptic responsiveness
    78 potentiation
    79 presynaptic terminals
    80 presynaptic transmitter release
    81 quantum
    82 receptor clusters
    83 receptors
    84 recruitment
    85 release
    86 response
    87 responsiveness
    88 spontaneous miniature synaptic currents
    89 sustained potentiation
    90 synapses
    91 synaptic currents
    92 terminals
    93 test
    94 transmitter release
    95 unitary quantum
    96 schema:name Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons
    97 schema:pagination 134-139
    98 schema:productId N0abfcaae8ae94b00a05485ba85559ed2
    99 N0b2a6c404dd049cab06956c7680e5afb
    100 N2c3ea885f2b240af8e65af1b935f06d6
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053313844
    102 https://doi.org/10.1038/357134a0
    103 schema:sdDatePublished 2021-11-01T18:00
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N24e2f4c0430f418aae38cb054e68fdbe
    106 schema:url https://doi.org/10.1038/357134a0
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N0825e92290304cbab0d6933d59b61f6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Receptors, N-Methyl-D-Aspartate
    112 rdf:type schema:DefinedTerm
    113 N0abfcaae8ae94b00a05485ba85559ed2 schema:name doi
    114 schema:value 10.1038/357134a0
    115 rdf:type schema:PropertyValue
    116 N0b2a6c404dd049cab06956c7680e5afb schema:name dimensions_id
    117 schema:value pub.1053313844
    118 rdf:type schema:PropertyValue
    119 N1b986219f67646d193a971a35a8c7c74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Magnesium
    121 rdf:type schema:DefinedTerm
    122 N2120603b6a264f5aaa7f734f3a4055ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Calcium
    124 rdf:type schema:DefinedTerm
    125 N2318e38363414bb5b9cb66cfffee38d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Evoked Potentials
    127 rdf:type schema:DefinedTerm
    128 N24e2f4c0430f418aae38cb054e68fdbe schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N261393a12bcc4199a57f01d078c98ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Glutamates
    132 rdf:type schema:DefinedTerm
    133 N2c3ea885f2b240af8e65af1b935f06d6 schema:name pubmed_id
    134 schema:value 1349728
    135 rdf:type schema:PropertyValue
    136 N2f50af67a1d142b18ff66c2332332248 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Rats
    138 rdf:type schema:DefinedTerm
    139 N3ff3352c05544f6c880bbd461a0b5907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Cells, Cultured
    141 rdf:type schema:DefinedTerm
    142 N40ca4e27715141b3a077439ee68f359c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Glutamic Acid
    144 rdf:type schema:DefinedTerm
    145 N4618a1f81ab74719be3980b8c1dbcb62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Tetrodotoxin
    147 rdf:type schema:DefinedTerm
    148 N53dfc718f69d4e2fa6add91b96636b20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Membrane Potentials
    150 rdf:type schema:DefinedTerm
    151 N68e262f6b10a4cc88ee741664e4c508a schema:volumeNumber 357
    152 rdf:type schema:PublicationVolume
    153 N84f6a4f9cefc49a18a3718249d37dc6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Animals, Newborn
    155 rdf:type schema:DefinedTerm
    156 N9b43f9dae27f4893848a01590b253df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Neurons
    158 rdf:type schema:DefinedTerm
    159 Na11b1881bba34dc0a696cbd29ac62e7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Quinoxalines
    161 rdf:type schema:DefinedTerm
    162 Na1646c4610994f56a271aaf8f99a5ddd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name 6-Cyano-7-nitroquinoxaline-2,3-dione
    164 rdf:type schema:DefinedTerm
    165 Nafaa2392e3f64f289af40b8424f7729f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Animals
    167 rdf:type schema:DefinedTerm
    168 Nb5ecc7980a904c13a4fd9d7658bcbae5 rdf:first sg:person.011127405404.32
    169 rdf:rest rdf:nil
    170 Nb73737c369024e56b8ad57424c532941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Hippocampus
    172 rdf:type schema:DefinedTerm
    173 Nc1634a7c08d44f4d9b0c87a973a3b030 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Time Factors
    175 rdf:type schema:DefinedTerm
    176 Ncc4ccd179e71411aaf5e0de4f478407f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Synapses
    178 rdf:type schema:DefinedTerm
    179 Ncdadc0a37432476bb6be8bf5a260da00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Kinetics
    181 rdf:type schema:DefinedTerm
    182 Ndbf6b2bc329743c6b04bf61adbc26b4e rdf:first sg:person.01117735515.00
    183 rdf:rest Nb5ecc7980a904c13a4fd9d7658bcbae5
    184 Ne6c07de4e9f9446783b5a128f295d3e4 schema:issueNumber 6374
    185 rdf:type schema:PublicationIssue
    186 Nf3159d95e78a4158b73d0650f2da4f9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Pyramidal Tracts
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Medical and Health Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Neurosciences
    194 rdf:type schema:DefinedTerm
    195 sg:journal.1018957 schema:issn 0028-0836
    196 1476-4687
    197 schema:name Nature
    198 schema:publisher Springer Nature
    199 rdf:type schema:Periodical
    200 sg:person.011127405404.32 schema:affiliation grid-institutes:grid.240952.8
    201 schema:familyName Tsien
    202 schema:givenName Richard W.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127405404.32
    204 rdf:type schema:Person
    205 sg:person.01117735515.00 schema:affiliation grid-institutes:grid.240952.8
    206 schema:familyName Malgaroli
    207 schema:givenName Antonio
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117735515.00
    209 rdf:type schema:Person
    210 sg:pub.10.1038/225701a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048426419
    211 https://doi.org/10.1038/225701a0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/297496a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019538087
    214 https://doi.org/10.1038/297496a0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/305719a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200360
    217 https://doi.org/10.1038/305719a0
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/325058a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001870786
    220 https://doi.org/10.1038/325058a0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/328426a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056438811
    223 https://doi.org/10.1038/328426a0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/338500a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043890334
    226 https://doi.org/10.1038/338500a0
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/340554a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026556646
    229 https://doi.org/10.1038/340554a0
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/341230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176704
    232 https://doi.org/10.1038/341230a0
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/346177a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052184988
    235 https://doi.org/10.1038/346177a0
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/346724a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002891543
    238 https://doi.org/10.1038/346724a0
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/349418a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034101137
    241 https://doi.org/10.1038/349418a0
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/350271a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009500467
    244 https://doi.org/10.1038/350271a0
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/350282a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026599854
    247 https://doi.org/10.1038/350282a0
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/350344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024235867
    250 https://doi.org/10.1038/350344a0
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/353396a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043006552
    253 https://doi.org/10.1038/353396a0
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/354073a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279313
    256 https://doi.org/10.1038/354073a0
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/355050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046763887
    259 https://doi.org/10.1038/355050a0
    260 rdf:type schema:CreativeWork
    261 grid-institutes:grid.240952.8 schema:alternateName Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA
    262 schema:name Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, 94305, Stanford, California, USA
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...