The dead-end elimination theorem and its use in protein side-chain positioning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-04

AUTHORS

J Desmet, M De Maeyer, B Hazes, I Lasters

ABSTRACT

The prediction of a protein's tertiary structure is still a considerable problem because the huge amount of possible conformational space¹ makes it computationally difficult. With regard to side-chain modelling, a solution has been attempted by the grouping of side-chain conformations into representative sets of rotamers²⁻⁵. Nonetheless, an exhaustive combinatorial search is still limited to carefully indentified packing units⁵⁶ containing a limited number of residues. For larger systems other strategies had to be developed, such as the Monte Carlo Procedure⁶⁷ and the genetic algorithm and clustering approach⁸. Here we present a theorem, referred to as the 'dead-end elimination' theorem, which imposes a suitable condition to identify rotamers that cannot be members of the global minimum energy conformation. Application of this theorem effectively controls the computational explosion of the rotamer combinatorial problem, thereby allowing the determination of the global minimum energy conformation of a large collection of side chains. More... »

PAGES

539-542

Journal

TITLE

Nature

ISSUE

6369

VOLUME

356

Author Affiliations

Related Patents

  • Methods And Means For The Production Of Ig-Like Molecules
  • Regio- And Enantioselective Alkane Hydroxylation With Modified Cytochrome P450
  • G-Csf Analog Compositions And Methods
  • Antibody Producing Non-Human Mammals
  • Protein Design Automation For Protein Libraries
  • Regio- And Enantioselective Alkane Hydroxylation With Modified Cytochrome P450
  • Structure-Based Screening Techniques For Drug Discovery
  • Method For Generating Information Related To The Molecular Structure Of A Biomolecule
  • Apparatus And Method For Automated Protein Design
  • Apparatus And Method For Automated Protein Design
  • Apparatus And Method For Structure-Based Prediction Of Amino Acid Sequences
  • Stable Fungal Cel6 Enzyme Variants
  • Apparatus And Method For Automated Protein Design
  • Systems And Methods For Sampling And Analysis Of Polymer Conformational Dynamics
  • Methods Of Using G-Csf Analog Compositions
  • Methods For Determining Correlated Residues In A Protein Or Other Biopolymer Using Molecular Dynamics
  • Regio- And Enantioselective Alkane Hydroxylation With Modified Cytochrome P450
  • Apparatus And Method For Automated Protein Design
  • Systems And Methods For Identifying Thermodynamically Relevant Polymer Conformations
  • Antibody Producing Non-Human Mammals
  • Modified Cytosine Deaminases
  • Methods Of Incorporating Amino Acid Analogs Into Proteins
  • Apparatus And Method For Automated Protein Design
  • Methods Of Incorporating Amino Acid Analogs Into Proteins
  • Apparatus And Method For Automated Protein Design
  • Regio- And Enantioselective Alkane Hydroxylation With Modified Cytochrome P450
  • Method For Selecting A Single Cell Expressing A Heterogeneous Combination Of Antibodies
  • Non-Natural Amino Acid Substituted Polypeptides
  • Apparatus And Method For Automated Protein Design
  • Apparatus And Method For Designing Proteins And Protein Libraries
  • Apparatus And Method For Designing Proteins And Protein Libraries
  • Protein Design Automation For Protein Libraries
  • Amino Acid Substituted Molecules
  • Antibody Producing Non-Human Mammals
  • Amino Acid Substituted Molecules
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/356539a0

    DOI

    http://dx.doi.org/10.1038/356539a0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000184640

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21488406


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Structure, Tertiary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Interdisciplinary Research Center, KU Leuven Campus Kortrijk, B8500 Kortrijk, Belgium."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Desmet", 
            "givenName": "J", 
            "id": "sg:person.0774455075.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774455075.65"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "De Maeyer", 
            "givenName": "M", 
            "id": "sg:person.01133745206.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133745206.17"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Hazes", 
            "givenName": "B", 
            "type": "Person"
          }, 
          {
            "familyName": "Lasters", 
            "givenName": "I", 
            "id": "sg:person.01157016675.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157016675.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-2836(83)90008-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013127184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/352448a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013184073", 
              "https://doi.org/10.1038/352448a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(87)90358-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016209422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(78)90408-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023143486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(91)90883-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026890876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(87)90314-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027348746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(77)80200-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032593955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcc.540040211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034193440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(87)90038-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053742408"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-04", 
        "datePublishedReg": "1992-04-01", 
        "description": "The prediction of a protein's tertiary structure is still a considerable problem because the huge amount of possible conformational space\u00b9 makes it computationally difficult. With regard to side-chain modelling, a solution has been attempted by the grouping of side-chain conformations into representative sets of rotamers\u00b2\u207b\u2075. Nonetheless, an exhaustive combinatorial search is still limited to carefully indentified packing units\u2075\u2076 containing a limited number of residues. For larger systems other strategies had to be developed, such as the Monte Carlo Procedure\u2076\u2077 and the genetic algorithm and clustering approach\u2078. Here we present a theorem, referred to as the 'dead-end elimination' theorem, which imposes a suitable condition to identify rotamers that cannot be members of the global minimum energy conformation. Application of this theorem effectively controls the computational explosion of the rotamer combinatorial problem, thereby allowing the determination of the global minimum energy conformation of a large collection of side chains.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/356539a0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6369", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "356"
          }
        ], 
        "name": "The dead-end elimination theorem and its use in protein side-chain positioning", 
        "pagination": "539-542", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "00e0ab70c6a806e58cb1b0afbaa33fb64d36ce688ccb2dba128c1b5c85829991"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21488406"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/356539a0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000184640"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/356539a0", 
          "https://app.dimensions.ai/details/publication/pub.1000184640"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000421.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/356539a0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/356539a0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/356539a0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/356539a0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/356539a0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      21 PREDICATES      43 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/356539a0 schema:about N03b884971d98469bb0f21b4a3868f586
    2 N05e1f2c0e1d54470acb44a9cd4e4260a
    3 N2518fc731fae4e3bb7226a73f973e0ec
    4 N6114a37c7393456ca1e89d47ff3df27e
    5 N97f4836da986498e90c2ded1f0a4388b
    6 anzsrc-for:08
    7 anzsrc-for:0801
    8 schema:author N3877dfdb9a0d4d39a9f50be6605bfa6e
    9 schema:citation sg:pub.10.1038/352448a0
    10 https://doi.org/10.1002/jcc.540040211
    11 https://doi.org/10.1016/0022-2836(78)90408-4
    12 https://doi.org/10.1016/0022-2836(83)90008-6
    13 https://doi.org/10.1016/0022-2836(87)90038-6
    14 https://doi.org/10.1016/0022-2836(87)90314-7
    15 https://doi.org/10.1016/0022-2836(87)90358-5
    16 https://doi.org/10.1016/0022-2836(91)90883-8
    17 https://doi.org/10.1016/s0022-2836(77)80200-3
    18 schema:datePublished 1992-04
    19 schema:datePublishedReg 1992-04-01
    20 schema:description The prediction of a protein's tertiary structure is still a considerable problem because the huge amount of possible conformational space¹ makes it computationally difficult. With regard to side-chain modelling, a solution has been attempted by the grouping of side-chain conformations into representative sets of rotamers²⁻⁵. Nonetheless, an exhaustive combinatorial search is still limited to carefully indentified packing units⁵⁶ containing a limited number of residues. For larger systems other strategies had to be developed, such as the Monte Carlo Procedure⁶⁷ and the genetic algorithm and clustering approach⁸. Here we present a theorem, referred to as the 'dead-end elimination' theorem, which imposes a suitable condition to identify rotamers that cannot be members of the global minimum energy conformation. Application of this theorem effectively controls the computational explosion of the rotamer combinatorial problem, thereby allowing the determination of the global minimum energy conformation of a large collection of side chains.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N07ccf7b5475149a5afb295f63d4194fd
    25 N731556ef32e747e9b57c99a5791a36c2
    26 sg:journal.1018957
    27 schema:name The dead-end elimination theorem and its use in protein side-chain positioning
    28 schema:pagination 539-542
    29 schema:productId N37567668e3ac40d9bba29f814132027c
    30 N3ce671fdf8a0475db18197cd761ecb14
    31 N66d2b4cd9f28464a9fbb59478257bd00
    32 N90c60602ef7d49758a84b6426864fd41
    33 Na2793edd3ca647ba9c40c9c80d404258
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000184640
    35 https://doi.org/10.1038/356539a0
    36 schema:sdDatePublished 2019-04-10T14:47
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N1c6e3257e85f4a1db9b17837c59a6669
    39 schema:url http://www.nature.com/articles/356539a0
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N03b884971d98469bb0f21b4a3868f586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    44 schema:name Algorithms
    45 rdf:type schema:DefinedTerm
    46 N05e1f2c0e1d54470acb44a9cd4e4260a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    47 schema:name Thermodynamics
    48 rdf:type schema:DefinedTerm
    49 N07ccf7b5475149a5afb295f63d4194fd schema:issueNumber 6369
    50 rdf:type schema:PublicationIssue
    51 N1536a5e7521849258707e635a88773e4 rdf:first N3e3b636864ec40e38047b15c8a8aca16
    52 rdf:rest N36275e7806504355af4faf5a70817108
    53 N1c6e3257e85f4a1db9b17837c59a6669 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N2518fc731fae4e3bb7226a73f973e0ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    56 schema:name Models, Molecular
    57 rdf:type schema:DefinedTerm
    58 N36275e7806504355af4faf5a70817108 rdf:first sg:person.01157016675.80
    59 rdf:rest rdf:nil
    60 N37567668e3ac40d9bba29f814132027c schema:name dimensions_id
    61 schema:value pub.1000184640
    62 rdf:type schema:PropertyValue
    63 N3877dfdb9a0d4d39a9f50be6605bfa6e rdf:first sg:person.0774455075.65
    64 rdf:rest Ncfb5df0be5594ab1add2f70ee6d469f2
    65 N3ce671fdf8a0475db18197cd761ecb14 schema:name doi
    66 schema:value 10.1038/356539a0
    67 rdf:type schema:PropertyValue
    68 N3e3b636864ec40e38047b15c8a8aca16 schema:familyName Hazes
    69 schema:givenName B
    70 rdf:type schema:Person
    71 N6114a37c7393456ca1e89d47ff3df27e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Forecasting
    73 rdf:type schema:DefinedTerm
    74 N66d2b4cd9f28464a9fbb59478257bd00 schema:name readcube_id
    75 schema:value 00e0ab70c6a806e58cb1b0afbaa33fb64d36ce688ccb2dba128c1b5c85829991
    76 rdf:type schema:PropertyValue
    77 N731556ef32e747e9b57c99a5791a36c2 schema:volumeNumber 356
    78 rdf:type schema:PublicationVolume
    79 N90c60602ef7d49758a84b6426864fd41 schema:name nlm_unique_id
    80 schema:value 0410462
    81 rdf:type schema:PropertyValue
    82 N97f4836da986498e90c2ded1f0a4388b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Protein Structure, Tertiary
    84 rdf:type schema:DefinedTerm
    85 Na2793edd3ca647ba9c40c9c80d404258 schema:name pubmed_id
    86 schema:value 21488406
    87 rdf:type schema:PropertyValue
    88 Ncfb5df0be5594ab1add2f70ee6d469f2 rdf:first sg:person.01133745206.17
    89 rdf:rest N1536a5e7521849258707e635a88773e4
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1018957 schema:issn 0090-0028
    97 1476-4687
    98 schema:name Nature
    99 rdf:type schema:Periodical
    100 sg:person.01133745206.17 schema:familyName De Maeyer
    101 schema:givenName M
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133745206.17
    103 rdf:type schema:Person
    104 sg:person.01157016675.80 schema:familyName Lasters
    105 schema:givenName I
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157016675.80
    107 rdf:type schema:Person
    108 sg:person.0774455075.65 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    109 schema:familyName Desmet
    110 schema:givenName J
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774455075.65
    112 rdf:type schema:Person
    113 sg:pub.10.1038/352448a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013184073
    114 https://doi.org/10.1038/352448a0
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1002/jcc.540040211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034193440
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0022-2836(78)90408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023143486
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/0022-2836(83)90008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013127184
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/0022-2836(87)90038-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053742408
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0022-2836(87)90314-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027348746
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0022-2836(87)90358-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016209422
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0022-2836(91)90883-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026890876
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/s0022-2836(77)80200-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032593955
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
    133 schema:name Interdisciplinary Research Center, KU Leuven Campus Kortrijk, B8500 Kortrijk, Belgium.
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...