Assessment of protein models with three-dimensional profiles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-03

AUTHORS

Roland Lüthy, James U. Bowie, David Eisenberg

ABSTRACT

AS methods for determining protein three-dimensional (3D) structure develop, a continuing problem is how to verify that the final protein model is correct. The revision of several protein models to correct errors1–6 has prompted the development of new criteria for judging the validity of X-ray7–9 and NMR10,11 structures, as well as the formation of energetic12–14 and empirical methods15,16 to evaluate the correctness of protein models. The challenge is to distinguish between a mistraced or wrongly folded model, and one that is basically correct, but not adequately refined. We show that an effective test of the accuracy of a 3D protein model is a comparison of the model to its own amino-acid sequence, using a 3D profile16, computed from the atomic coordinates of the structure 3D profiles of correct protein structures match their own sequences with high scores. In contrast, 3D profiles for protein models known to be wrong score poorly. An incorrectly modelled segment in an otherwise correct structure can be identified by examining the profile score in a moving-window scan. The accuracy of a protein model can be assessed by its 3D profile, regardless of whether the model has been derived by X-ray, NMR or computational procedures. More... »

PAGES

83-85

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/356083a0

DOI

http://dx.doi.org/10.1038/356083a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017646872

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1538787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Ray Diffraction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Institute for Experimental Career Research, Ch. des Boveresse 155, 1066, Epalinges s/Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA", 
            "Swiss Institute for Experimental Career Research, Ch. des Boveresse 155, 1066, Epalinges s/Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcthy", 
        "givenName": "Roland", 
        "id": "sg:person.01305173372.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305173372.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bowie", 
        "givenName": "James U.", 
        "id": "sg:person.01360571277.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360571277.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eisenberg", 
        "givenName": "David", 
        "id": "sg:person.01261155035.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261155035.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/343687a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035234503", 
          "https://doi.org/10.1038/343687a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/319199a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020743092", 
          "https://doi.org/10.1038/319199a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/337615a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037836841", 
          "https://doi.org/10.1038/337615a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/355472a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048571716", 
          "https://doi.org/10.1038/355472a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-03", 
    "datePublishedReg": "1992-03-01", 
    "description": "Abstract AS methods for determining protein three-dimensional (3D) structure develop, a continuing problem is how to verify that the final protein model is correct. The revision of several protein models to correct errors1\u20136 has prompted the development of new criteria for judging the validity of X-ray7\u20139 and NMR10,11 structures, as well as the formation of energetic12\u201314 and empirical methods15,16 to evaluate the correctness of protein models. The challenge is to distinguish between a mistraced or wrongly folded model, and one that is basically correct, but not adequately refined. We show that an effective test of the accuracy of a 3D protein model is a comparison of the model to its own amino-acid sequence, using a 3D profile16, computed from the atomic coordinates of the structure 3D profiles of correct protein structures match their own sequences with high scores. In contrast, 3D profiles for protein models known to be wrong score poorly. An incorrectly modelled segment in an otherwise correct structure can be identified by examining the profile score in a moving-window scan. The accuracy of a protein model can be assessed by its 3D profile, regardless of whether the model has been derived by X-ray, NMR or computational procedures.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/356083a0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6364", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "356"
      }
    ], 
    "keywords": [
      "protein models", 
      "own amino acid sequences", 
      "final protein model", 
      "amino acid sequence", 
      "correct protein structure", 
      "three-dimensional structure", 
      "protein structure", 
      "own sequences", 
      "sequence", 
      "atomic coordinates", 
      "correct structure", 
      "protein", 
      "structure", 
      "profile", 
      "wrong scores", 
      "contrast", 
      "formation", 
      "development", 
      "segments", 
      "NMR", 
      "revision", 
      "model", 
      "comparison", 
      "effective test", 
      "one", 
      "challenges", 
      "three-dimensional profile", 
      "profile score", 
      "X-ray", 
      "computational procedure", 
      "method", 
      "assessment", 
      "test", 
      "procedure", 
      "coordinates", 
      "criteria", 
      "accuracy", 
      "new criterion", 
      "scans", 
      "scores", 
      "problem", 
      "validity", 
      "higher scores", 
      "correctness"
    ], 
    "name": "Assessment of protein models with three-dimensional profiles", 
    "pagination": "83-85", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017646872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/356083a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1538787"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/356083a0", 
      "https://app.dimensions.ai/details/publication/pub.1017646872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_240.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/356083a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/356083a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/356083a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/356083a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/356083a0'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      80 URIs      68 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/356083a0 schema:about N09d57f10b69741e999caf51de9661d65
2 N50ab916cf0c54a8381bb351479b06ce7
3 N6fb4ac61cdca44b1a8a35c10d28d0b9b
4 Nae9f127cfc5144599119125476a4fb2b
5 Nb806d52cf55a4f4784859b60aafc2017
6 Nbf13a269cf274f81ac4e63dc5bc2c9b1
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N6adb5c19223b47c08101433f9915a605
10 schema:citation sg:pub.10.1038/319199a0
11 sg:pub.10.1038/337615a0
12 sg:pub.10.1038/343687a0
13 sg:pub.10.1038/355472a0
14 schema:datePublished 1992-03
15 schema:datePublishedReg 1992-03-01
16 schema:description Abstract AS methods for determining protein three-dimensional (3D) structure develop, a continuing problem is how to verify that the final protein model is correct. The revision of several protein models to correct errors1–6 has prompted the development of new criteria for judging the validity of X-ray7–9 and NMR10,11 structures, as well as the formation of energetic12–14 and empirical methods15,16 to evaluate the correctness of protein models. The challenge is to distinguish between a mistraced or wrongly folded model, and one that is basically correct, but not adequately refined. We show that an effective test of the accuracy of a 3D protein model is a comparison of the model to its own amino-acid sequence, using a 3D profile16, computed from the atomic coordinates of the structure 3D profiles of correct protein structures match their own sequences with high scores. In contrast, 3D profiles for protein models known to be wrong score poorly. An incorrectly modelled segment in an otherwise correct structure can be identified by examining the profile score in a moving-window scan. The accuracy of a protein model can be assessed by its 3D profile, regardless of whether the model has been derived by X-ray, NMR or computational procedures.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf Na27c91e4f5854b0489dbd0f86ca11c03
20 Nd1e267a859304283bf562ff3e7a46a1b
21 sg:journal.1018957
22 schema:keywords NMR
23 X-ray
24 accuracy
25 amino acid sequence
26 assessment
27 atomic coordinates
28 challenges
29 comparison
30 computational procedure
31 contrast
32 coordinates
33 correct protein structure
34 correct structure
35 correctness
36 criteria
37 development
38 effective test
39 final protein model
40 formation
41 higher scores
42 method
43 model
44 new criterion
45 one
46 own amino acid sequences
47 own sequences
48 problem
49 procedure
50 profile
51 profile score
52 protein
53 protein models
54 protein structure
55 revision
56 scans
57 scores
58 segments
59 sequence
60 structure
61 test
62 three-dimensional profile
63 three-dimensional structure
64 validity
65 wrong scores
66 schema:name Assessment of protein models with three-dimensional profiles
67 schema:pagination 83-85
68 schema:productId N6dc75303c94f4fdb9fe2c1850b1a3add
69 N9bc21b615f0c4e09a9a1824847eadbe0
70 Nacff4d94556c49b49e20e0963ae64962
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017646872
72 https://doi.org/10.1038/356083a0
73 schema:sdDatePublished 2022-11-24T20:47
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nb7de5e1b4466492d89551e96b0a9cf18
76 schema:url https://doi.org/10.1038/356083a0
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N09d57f10b69741e999caf51de9661d65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Amino Acid Sequence
82 rdf:type schema:DefinedTerm
83 N37a6fedcedad4e70ac529af228991a2a rdf:first sg:person.01360571277.74
84 rdf:rest N59735e51fa56458bbea41fc66d9cd1ba
85 N50ab916cf0c54a8381bb351479b06ce7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Protein Conformation
87 rdf:type schema:DefinedTerm
88 N59735e51fa56458bbea41fc66d9cd1ba rdf:first sg:person.01261155035.26
89 rdf:rest rdf:nil
90 N6adb5c19223b47c08101433f9915a605 rdf:first sg:person.01305173372.78
91 rdf:rest N37a6fedcedad4e70ac529af228991a2a
92 N6dc75303c94f4fdb9fe2c1850b1a3add schema:name dimensions_id
93 schema:value pub.1017646872
94 rdf:type schema:PropertyValue
95 N6fb4ac61cdca44b1a8a35c10d28d0b9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name X-Ray Diffraction
97 rdf:type schema:DefinedTerm
98 N9bc21b615f0c4e09a9a1824847eadbe0 schema:name pubmed_id
99 schema:value 1538787
100 rdf:type schema:PropertyValue
101 Na27c91e4f5854b0489dbd0f86ca11c03 schema:issueNumber 6364
102 rdf:type schema:PublicationIssue
103 Nacff4d94556c49b49e20e0963ae64962 schema:name doi
104 schema:value 10.1038/356083a0
105 rdf:type schema:PropertyValue
106 Nae9f127cfc5144599119125476a4fb2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Proteins
108 rdf:type schema:DefinedTerm
109 Nb7de5e1b4466492d89551e96b0a9cf18 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nb806d52cf55a4f4784859b60aafc2017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Magnetic Resonance Spectroscopy
113 rdf:type schema:DefinedTerm
114 Nbf13a269cf274f81ac4e63dc5bc2c9b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Molecular
116 rdf:type schema:DefinedTerm
117 Nd1e267a859304283bf562ff3e7a46a1b schema:volumeNumber 356
118 rdf:type schema:PublicationVolume
119 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
120 schema:name Biological Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biochemistry and Cell Biology
124 rdf:type schema:DefinedTerm
125 sg:journal.1018957 schema:issn 0028-0836
126 1476-4687
127 schema:name Nature
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01261155035.26 schema:affiliation grid-institutes:grid.19006.3e
131 schema:familyName Eisenberg
132 schema:givenName David
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261155035.26
134 rdf:type schema:Person
135 sg:person.01305173372.78 schema:affiliation grid-institutes:None
136 schema:familyName Lüthy
137 schema:givenName Roland
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305173372.78
139 rdf:type schema:Person
140 sg:person.01360571277.74 schema:affiliation grid-institutes:grid.19006.3e
141 schema:familyName Bowie
142 schema:givenName James U.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360571277.74
144 rdf:type schema:Person
145 sg:pub.10.1038/319199a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020743092
146 https://doi.org/10.1038/319199a0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/337615a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037836841
149 https://doi.org/10.1038/337615a0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/343687a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035234503
152 https://doi.org/10.1038/343687a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/355472a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048571716
155 https://doi.org/10.1038/355472a0
156 rdf:type schema:CreativeWork
157 grid-institutes:None schema:alternateName Swiss Institute for Experimental Career Research, Ch. des Boveresse 155, 1066, Epalinges s/Lausanne, Switzerland
158 schema:name Swiss Institute for Experimental Career Research, Ch. des Boveresse 155, 1066, Epalinges s/Lausanne, Switzerland
159 The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA
160 rdf:type schema:Organization
161 grid-institutes:grid.19006.3e schema:alternateName The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA
162 schema:name The Molecular Biology Institute and Department of Chemistry and Biochemistry, UCLA, 90024-1570, Los Angeles, California, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...