A polymer gel with electrically driven motility View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-01

AUTHORS

Yoshihito Osada, Hidenori Okuzaki, Hirofumi Hori

ABSTRACT

A SYSTEM capable of converting chemical energy to mechanical energy could serve as an actuator or an 'artificial muscle' in several applications. Here we describe a chemomechanical system of this sort based on a synthetic polymer gel. The gel network is anionic, and positively charged surfactant molecules can therefore bind to its surface, inducing local shrinkage by decreasing the difference in osmotic pressure between the gel interior and the solution outside. By using an electric field to direct surfactant binding selectively to one side of the gel, we can induce contraction and curvature of a strip of gel. Reversing the direction of the field causes contraction of the opposite side, and when the gel is suspended in solution from a ratchet mechanism, it can thereby be made to move with a worm-like motion at a velocity of up to 25 cm min−1. More... »

PAGES

242-244

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/355242a0

DOI

http://dx.doi.org/10.1038/355242a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008004133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Osada", 
        "givenName": "Yoshihito", 
        "id": "sg:person.015777734671.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015777734671.54"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Okuzaki", 
        "givenName": "Hidenori", 
        "id": "sg:person.01227261250.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227261250.60"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hori", 
        "givenName": "Hirofumi", 
        "id": "sg:person.014554121331.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014554121331.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/256195a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036523114", 
          "https://doi.org/10.1038/256195a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/165514a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039717355", 
          "https://doi.org/10.1038/165514a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/210568a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043360833", 
          "https://doi.org/10.1038/210568a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-01", 
    "datePublishedReg": "1992-01-01", 
    "description": "A SYSTEM capable of converting chemical energy to mechanical energy could serve as an actuator or an 'artificial muscle' in several applications. Here we describe a chemomechanical system of this sort based on a synthetic polymer gel. The gel network is anionic, and positively charged surfactant molecules can therefore bind to its surface, inducing local shrinkage by decreasing the difference in osmotic pressure between the gel interior and the solution outside. By using an electric field to direct surfactant binding selectively to one side of the gel, we can induce contraction and curvature of a strip of gel. Reversing the direction of the field causes contraction of the opposite side, and when the gel is suspended in solution from a ratchet mechanism, it can thereby be made to move with a worm-like motion at a velocity of up to 25 cm min\u22121.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/355242a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6357", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "355"
      }
    ], 
    "name": "A polymer gel with electrically driven motility", 
    "pagination": "242-244", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2621f23569b298546dd1b9c968f3d0605595ebd4054620b6b317807e44aee8c1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/355242a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008004133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/355242a0", 
      "https://app.dimensions.ai/details/publication/pub.1008004133"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/355242a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/355242a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/355242a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/355242a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/355242a0'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/355242a0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N871add3614984313ac39065a612e9224
4 schema:citation sg:pub.10.1038/165514a0
5 sg:pub.10.1038/210568a0
6 sg:pub.10.1038/256195a0
7 schema:datePublished 1992-01
8 schema:datePublishedReg 1992-01-01
9 schema:description A SYSTEM capable of converting chemical energy to mechanical energy could serve as an actuator or an 'artificial muscle' in several applications. Here we describe a chemomechanical system of this sort based on a synthetic polymer gel. The gel network is anionic, and positively charged surfactant molecules can therefore bind to its surface, inducing local shrinkage by decreasing the difference in osmotic pressure between the gel interior and the solution outside. By using an electric field to direct surfactant binding selectively to one side of the gel, we can induce contraction and curvature of a strip of gel. Reversing the direction of the field causes contraction of the opposite side, and when the gel is suspended in solution from a ratchet mechanism, it can thereby be made to move with a worm-like motion at a velocity of up to 25 cm min−1.
10 schema:genre non_research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N04daf0da7bcf448685febf319d863fd7
14 Nae7d40ecd6ee43c7ad7262dfe6831ade
15 sg:journal.1018957
16 schema:name A polymer gel with electrically driven motility
17 schema:pagination 242-244
18 schema:productId Nce86d316c5dc4095a34638c1c0a968af
19 Ne07408deff85460fbdc19ed12818503e
20 Nf74685059f5947df9ee097b359551cc1
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008004133
22 https://doi.org/10.1038/355242a0
23 schema:sdDatePublished 2019-04-10T14:47
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N428bff1fb28e4afeaa0dab2e55488217
26 schema:url http://www.nature.com/articles/355242a0
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N04daf0da7bcf448685febf319d863fd7 schema:volumeNumber 355
31 rdf:type schema:PublicationVolume
32 N428bff1fb28e4afeaa0dab2e55488217 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N871add3614984313ac39065a612e9224 rdf:first sg:person.015777734671.54
35 rdf:rest Nea73cd082a33435b9df8805858524e91
36 Na3ebcb2cb19041ff8b4f2d302d4e50ae rdf:first sg:person.014554121331.07
37 rdf:rest rdf:nil
38 Nae7d40ecd6ee43c7ad7262dfe6831ade schema:issueNumber 6357
39 rdf:type schema:PublicationIssue
40 Nce86d316c5dc4095a34638c1c0a968af schema:name readcube_id
41 schema:value 2621f23569b298546dd1b9c968f3d0605595ebd4054620b6b317807e44aee8c1
42 rdf:type schema:PropertyValue
43 Ne07408deff85460fbdc19ed12818503e schema:name doi
44 schema:value 10.1038/355242a0
45 rdf:type schema:PropertyValue
46 Nea73cd082a33435b9df8805858524e91 rdf:first sg:person.01227261250.60
47 rdf:rest Na3ebcb2cb19041ff8b4f2d302d4e50ae
48 Nf74685059f5947df9ee097b359551cc1 schema:name dimensions_id
49 schema:value pub.1008004133
50 rdf:type schema:PropertyValue
51 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
52 schema:name Engineering
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
55 schema:name Materials Engineering
56 rdf:type schema:DefinedTerm
57 sg:journal.1018957 schema:issn 0090-0028
58 1476-4687
59 schema:name Nature
60 rdf:type schema:Periodical
61 sg:person.01227261250.60 schema:familyName Okuzaki
62 schema:givenName Hidenori
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227261250.60
64 rdf:type schema:Person
65 sg:person.014554121331.07 schema:familyName Hori
66 schema:givenName Hirofumi
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014554121331.07
68 rdf:type schema:Person
69 sg:person.015777734671.54 schema:familyName Osada
70 schema:givenName Yoshihito
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015777734671.54
72 rdf:type schema:Person
73 sg:pub.10.1038/165514a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039717355
74 https://doi.org/10.1038/165514a0
75 rdf:type schema:CreativeWork
76 sg:pub.10.1038/210568a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043360833
77 https://doi.org/10.1038/210568a0
78 rdf:type schema:CreativeWork
79 sg:pub.10.1038/256195a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036523114
80 https://doi.org/10.1038/256195a0
81 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...