Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-07

AUTHORS

M Jahn, M J Rogers, D Söll

ABSTRACT

The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex. More... »

PAGES

258-260

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/352258a0

DOI

http://dx.doi.org/10.1038/352258a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000720463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1857423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anticodon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Site-Directed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahn", 
        "givenName": "M", 
        "type": "Person"
      }, 
      {
        "familyName": "Rogers", 
        "givenName": "M J", 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f6ll", 
        "givenName": "D", 
        "type": "Person"
      }
    ], 
    "datePublished": "1991-07", 
    "datePublishedReg": "1991-07-01", 
    "description": "The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/352258a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6332", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "352"
      }
    ], 
    "name": "Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase", 
    "pagination": "258-260", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "036e388a4924c092f5ccb2435fd3f1f70811607a12a5d929fb597041aab1acd4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1857423"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/352258a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000720463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/352258a0", 
      "https://app.dimensions.ai/details/publication/pub.1000720463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v352/n6332/full/352258a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/352258a0'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/352258a0 schema:about N4be42e76a20849309dbc3b582221c0c4
2 N6113ec488aae4f2dae01e86df8ea18a4
3 N7282fd3a0ea2495b8dc084abccd0cc9f
4 Nac3caf3f23504cd6a4e12af963cb8dab
5 Nb9cd09dac86a456c92953312b0f449ed
6 Nc3193e331e6e440ebbad0d6b2c1cb60b
7 Nc9a8e40c4d474d96aa80c0ea9cdce1d3
8 Ncc20799b3712482d832cfe2328e9ba7c
9 Nedf1e54edf214017b3977539352a2089
10 Nf1b45c81fe0b4b07b84c2a9de2b99a9d
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Ne2687c2b1a2345d789c83cc49afb146c
14 schema:datePublished 1991-07
15 schema:datePublishedReg 1991-07-01
16 schema:description The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N8e593d467a8944a7bd70d951bb354908
21 Nf6530bbc8ba346a4a1307729e8dc7511
22 sg:journal.1018957
23 schema:name Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase
24 schema:pagination 258-260
25 schema:productId N15061ae1cf37457fa913c7ca5435f317
26 N50a713c4945f4d0998a0e067fece4144
27 N65e5d477228a4965a9edb1a79466869a
28 N77f4f6793671401ba6b15fd65e951b8d
29 N7c260685b05d4e0e8951784c397b79fc
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000720463
31 https://doi.org/10.1038/352258a0
32 schema:sdDatePublished 2019-04-11T01:46
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N6b59096da667430d971628e12d8cb07e
35 schema:url http://www.nature.com/nature/journal/v352/n6332/full/352258a0.html
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0b1d6d24a0534e3390f80abc8c4a330a rdf:first N37706002217f4055a459dba0c28a7396
40 rdf:rest N3a14c01fa1f54adc9e7dce9a43dd296b
41 N15061ae1cf37457fa913c7ca5435f317 schema:name doi
42 schema:value 10.1038/352258a0
43 rdf:type schema:PropertyValue
44 N3254739b21c14ddbb5a044cb5d9b3073 schema:familyName Söll
45 schema:givenName D
46 rdf:type schema:Person
47 N37706002217f4055a459dba0c28a7396 schema:familyName Rogers
48 schema:givenName M J
49 rdf:type schema:Person
50 N3a14c01fa1f54adc9e7dce9a43dd296b rdf:first N3254739b21c14ddbb5a044cb5d9b3073
51 rdf:rest rdf:nil
52 N4be42e76a20849309dbc3b582221c0c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Kinetics
54 rdf:type schema:DefinedTerm
55 N50a713c4945f4d0998a0e067fece4144 schema:name readcube_id
56 schema:value 036e388a4924c092f5ccb2435fd3f1f70811607a12a5d929fb597041aab1acd4
57 rdf:type schema:PropertyValue
58 N6113ec488aae4f2dae01e86df8ea18a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Anticodon
60 rdf:type schema:DefinedTerm
61 N65e5d477228a4965a9edb1a79466869a schema:name nlm_unique_id
62 schema:value 0410462
63 rdf:type schema:PropertyValue
64 N6b59096da667430d971628e12d8cb07e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N7282fd3a0ea2495b8dc084abccd0cc9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Nucleic Acid Conformation
68 rdf:type schema:DefinedTerm
69 N77f4f6793671401ba6b15fd65e951b8d schema:name pubmed_id
70 schema:value 1857423
71 rdf:type schema:PropertyValue
72 N7c260685b05d4e0e8951784c397b79fc schema:name dimensions_id
73 schema:value pub.1000720463
74 rdf:type schema:PropertyValue
75 N8e593d467a8944a7bd70d951bb354908 schema:volumeNumber 352
76 rdf:type schema:PublicationVolume
77 Nac3caf3f23504cd6a4e12af963cb8dab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Escherichia coli
79 rdf:type schema:DefinedTerm
80 Nb9cd09dac86a456c92953312b0f449ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Mutagenesis, Site-Directed
82 rdf:type schema:DefinedTerm
83 Nc3193e331e6e440ebbad0d6b2c1cb60b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Base Sequence
85 rdf:type schema:DefinedTerm
86 Nc9a8e40c4d474d96aa80c0ea9cdce1d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Binding Sites
88 rdf:type schema:DefinedTerm
89 Ncc20799b3712482d832cfe2328e9ba7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Molecular Sequence Data
91 rdf:type schema:DefinedTerm
92 Ne2687c2b1a2345d789c83cc49afb146c rdf:first Nf38c1a695af94b88b5622ae24dba6a35
93 rdf:rest N0b1d6d24a0534e3390f80abc8c4a330a
94 Nedf1e54edf214017b3977539352a2089 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name RNA, Transfer, Gln
96 rdf:type schema:DefinedTerm
97 Nf1b45c81fe0b4b07b84c2a9de2b99a9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Amino Acyl-tRNA Synthetases
99 rdf:type schema:DefinedTerm
100 Nf38c1a695af94b88b5622ae24dba6a35 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
101 schema:familyName Jahn
102 schema:givenName M
103 rdf:type schema:Person
104 Nf6530bbc8ba346a4a1307729e8dc7511 schema:issueNumber 6332
105 rdf:type schema:PublicationIssue
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biochemistry and Cell Biology
111 rdf:type schema:DefinedTerm
112 sg:journal.1018957 schema:issn 0090-0028
113 1476-4687
114 schema:name Nature
115 rdf:type schema:Periodical
116 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
117 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...