Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-07

AUTHORS

M Jahn, M J Rogers, D Söll

ABSTRACT

The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex. More... »

PAGES

258-260

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/352258a0

DOI

http://dx.doi.org/10.1038/352258a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000720463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1857423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anticodon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Site-Directed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahn", 
        "givenName": "M", 
        "type": "Person"
      }, 
      {
        "familyName": "Rogers", 
        "givenName": "M J", 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f6ll", 
        "givenName": "D", 
        "type": "Person"
      }
    ], 
    "datePublished": "1991-07", 
    "datePublishedReg": "1991-07-01", 
    "description": "The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/352258a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6332", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "352"
      }
    ], 
    "name": "Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase", 
    "pagination": "258-260", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "036e388a4924c092f5ccb2435fd3f1f70811607a12a5d929fb597041aab1acd4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1857423"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/352258a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000720463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/352258a0", 
      "https://app.dimensions.ai/details/publication/pub.1000720463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v352/n6332/full/352258a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/352258a0'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/352258a0 schema:about N264dd28723694a958860b189d6d2d33f
2 N2c388b7c18d94b4b8d44d3246f8df456
3 N307daa622044419aa969f6481964731a
4 N4529b776a9454663a363a5a05571d97a
5 N457376a79600497a89f54fa646359efc
6 N5485675ccba94c158419f7556c2ac159
7 N5fa5231e787d404aba75a55482bdbed1
8 N9bfe209f56a84f1a98321a539dcf7f6e
9 Na3f9adc2b2094fb9a934236c48a0b351
10 Nbaa882d2994f4ea4bd609ca86240fda6
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Nb12e8147a36045d5850ab333f50c3ced
14 schema:datePublished 1991-07
15 schema:datePublishedReg 1991-07-01
16 schema:description The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N1ce1c5fcf8254b7eb032b9e39028a4d5
21 N9175f0b87bcf45a0a24cf5d9645acf90
22 sg:journal.1018957
23 schema:name Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase
24 schema:pagination 258-260
25 schema:productId N398bd3ba8f6e4061be5cc90111309f08
26 N5a618d233ec141e4b053eacb526c89c8
27 N74ffc49e60484e8ab66895efd402d920
28 Nd2d9c9fd7b25404ba0d1fa1bd91d006a
29 Nf6043eee064e4cbaa7453e24d0eb79f0
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000720463
31 https://doi.org/10.1038/352258a0
32 schema:sdDatePublished 2019-04-11T01:46
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N9deed56084dc457294ba15764e779c74
35 schema:url http://www.nature.com/nature/journal/v352/n6332/full/352258a0.html
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1ce1c5fcf8254b7eb032b9e39028a4d5 schema:issueNumber 6332
40 rdf:type schema:PublicationIssue
41 N1f2175cf161f4a55ac91a330d1019c7a schema:familyName Söll
42 schema:givenName D
43 rdf:type schema:Person
44 N264dd28723694a958860b189d6d2d33f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
45 schema:name RNA, Transfer, Gln
46 rdf:type schema:DefinedTerm
47 N2c388b7c18d94b4b8d44d3246f8df456 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Mutagenesis, Site-Directed
49 rdf:type schema:DefinedTerm
50 N307daa622044419aa969f6481964731a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Nucleic Acid Conformation
52 rdf:type schema:DefinedTerm
53 N398bd3ba8f6e4061be5cc90111309f08 schema:name doi
54 schema:value 10.1038/352258a0
55 rdf:type schema:PropertyValue
56 N41f5ee37ef2e413ca96322d36e5870a4 rdf:first Ncb87a19d0e4646a4a82048b2cb705aa6
57 rdf:rest N8752ce2eee3b4a2fb058947d00c30003
58 N4529b776a9454663a363a5a05571d97a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Molecular Sequence Data
60 rdf:type schema:DefinedTerm
61 N457376a79600497a89f54fa646359efc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Base Sequence
63 rdf:type schema:DefinedTerm
64 N5485675ccba94c158419f7556c2ac159 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Kinetics
66 rdf:type schema:DefinedTerm
67 N5a618d233ec141e4b053eacb526c89c8 schema:name pubmed_id
68 schema:value 1857423
69 rdf:type schema:PropertyValue
70 N5fa5231e787d404aba75a55482bdbed1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Anticodon
72 rdf:type schema:DefinedTerm
73 N74ffc49e60484e8ab66895efd402d920 schema:name readcube_id
74 schema:value 036e388a4924c092f5ccb2435fd3f1f70811607a12a5d929fb597041aab1acd4
75 rdf:type schema:PropertyValue
76 N8752ce2eee3b4a2fb058947d00c30003 rdf:first N1f2175cf161f4a55ac91a330d1019c7a
77 rdf:rest rdf:nil
78 N9175f0b87bcf45a0a24cf5d9645acf90 schema:volumeNumber 352
79 rdf:type schema:PublicationVolume
80 N9bfe209f56a84f1a98321a539dcf7f6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Amino Acyl-tRNA Synthetases
82 rdf:type schema:DefinedTerm
83 N9deed56084dc457294ba15764e779c74 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Na3f9adc2b2094fb9a934236c48a0b351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Binding Sites
87 rdf:type schema:DefinedTerm
88 Nb12e8147a36045d5850ab333f50c3ced rdf:first Nbf40e10e00d64acb92d9b8697018e6a2
89 rdf:rest N41f5ee37ef2e413ca96322d36e5870a4
90 Nbaa882d2994f4ea4bd609ca86240fda6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Escherichia coli
92 rdf:type schema:DefinedTerm
93 Nbf40e10e00d64acb92d9b8697018e6a2 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
94 schema:familyName Jahn
95 schema:givenName M
96 rdf:type schema:Person
97 Ncb87a19d0e4646a4a82048b2cb705aa6 schema:familyName Rogers
98 schema:givenName M J
99 rdf:type schema:Person
100 Nd2d9c9fd7b25404ba0d1fa1bd91d006a schema:name nlm_unique_id
101 schema:value 0410462
102 rdf:type schema:PropertyValue
103 Nf6043eee064e4cbaa7453e24d0eb79f0 schema:name dimensions_id
104 schema:value pub.1000720463
105 rdf:type schema:PropertyValue
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biochemistry and Cell Biology
111 rdf:type schema:DefinedTerm
112 sg:journal.1018957 schema:issn 0090-0028
113 1476-4687
114 schema:name Nature
115 rdf:type schema:Periodical
116 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
117 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...