Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-07

AUTHORS

M Jahn, M J Rogers, D Söll

ABSTRACT

The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex. More... »

PAGES

258-260

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/352258a0

DOI

http://dx.doi.org/10.1038/352258a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000720463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1857423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anticodon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Site-Directed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer, Gln", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahn", 
        "givenName": "M", 
        "type": "Person"
      }, 
      {
        "familyName": "Rogers", 
        "givenName": "M J", 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00f6ll", 
        "givenName": "D", 
        "type": "Person"
      }
    ], 
    "datePublished": "1991-07", 
    "datePublishedReg": "1991-07-01", 
    "description": "The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/352258a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6332", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "352"
      }
    ], 
    "name": "Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase", 
    "pagination": "258-260", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "036e388a4924c092f5ccb2435fd3f1f70811607a12a5d929fb597041aab1acd4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1857423"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/352258a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000720463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/352258a0", 
      "https://app.dimensions.ai/details/publication/pub.1000720463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v352/n6332/full/352258a0.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/352258a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/352258a0'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/352258a0 schema:about N23264e12038f4508a48a89f445e5b68f
2 N75b09640a28e40cfb1f5b10a7abef319
3 Na8cb54decc5c417385c1488e08b25652
4 Nb2335c0f40f54d18b5b6565979372933
5 Nbbaca0e8869f4288adf3d9e828296780
6 Nd5741709d3064763b2b75d4836c53e30
7 Ndd5c72a5d44b4162bb2dda0ba781c067
8 Ndd61f53ee1e940b9a42c9454dca585fe
9 Nfd77febe84ad47ca94bb5f524bc4a6fe
10 Nff4cb94a810f433c89fa1de6bb53d9ae
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Ncb586418d7f941ceace40d44fd5897fb
14 schema:datePublished 1991-07
15 schema:datePublishedReg 1991-07-01
16 schema:description The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N5d41bfa88e644216ae56789ab33ffd79
21 Nfea1426408404bd395971afd3eccce2b
22 sg:journal.1018957
23 schema:name Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for E. coli glutaminyl-tRNA synthetase
24 schema:pagination 258-260
25 schema:productId N16171c363ee741128d6aa349a59e5379
26 N48d7e62aa1494902af3ae0645b046f8f
27 Nae431ae060fc4a12a00a3c9c4c885b85
28 Nb434add2b16b42be9976d2594d6331ac
29 Nc1a0eeb9a79241d7a61aea06335bcad2
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000720463
31 https://doi.org/10.1038/352258a0
32 schema:sdDatePublished 2019-04-11T01:46
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N8e615d6b6ef6464883c6383a5376d4f8
35 schema:url http://www.nature.com/nature/journal/v352/n6332/full/352258a0.html
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N16171c363ee741128d6aa349a59e5379 schema:name doi
40 schema:value 10.1038/352258a0
41 rdf:type schema:PropertyValue
42 N20f8e8a48e3d4687b9566e2156332a59 rdf:first N517d69f2fdb0473fb8544aa11adac632
43 rdf:rest N547303e8128841ddb4a63d2f77b72f36
44 N23264e12038f4508a48a89f445e5b68f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
45 schema:name Binding Sites
46 rdf:type schema:DefinedTerm
47 N3bec8af6ed6c4ab68088856a8ea69924 schema:familyName Söll
48 schema:givenName D
49 rdf:type schema:Person
50 N48d7e62aa1494902af3ae0645b046f8f schema:name pubmed_id
51 schema:value 1857423
52 rdf:type schema:PropertyValue
53 N517d69f2fdb0473fb8544aa11adac632 schema:familyName Rogers
54 schema:givenName M J
55 rdf:type schema:Person
56 N547303e8128841ddb4a63d2f77b72f36 rdf:first N3bec8af6ed6c4ab68088856a8ea69924
57 rdf:rest rdf:nil
58 N5d41bfa88e644216ae56789ab33ffd79 schema:issueNumber 6332
59 rdf:type schema:PublicationIssue
60 N75b09640a28e40cfb1f5b10a7abef319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Base Sequence
62 rdf:type schema:DefinedTerm
63 N8e615d6b6ef6464883c6383a5376d4f8 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Na0e960f8ed4d4e5194aeefb9ed0256a0 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
66 schema:familyName Jahn
67 schema:givenName M
68 rdf:type schema:Person
69 Na8cb54decc5c417385c1488e08b25652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Anticodon
71 rdf:type schema:DefinedTerm
72 Nae431ae060fc4a12a00a3c9c4c885b85 schema:name dimensions_id
73 schema:value pub.1000720463
74 rdf:type schema:PropertyValue
75 Nb2335c0f40f54d18b5b6565979372933 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name RNA, Transfer, Gln
77 rdf:type schema:DefinedTerm
78 Nb434add2b16b42be9976d2594d6331ac schema:name readcube_id
79 schema:value 036e388a4924c092f5ccb2435fd3f1f70811607a12a5d929fb597041aab1acd4
80 rdf:type schema:PropertyValue
81 Nbbaca0e8869f4288adf3d9e828296780 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Mutagenesis, Site-Directed
83 rdf:type schema:DefinedTerm
84 Nc1a0eeb9a79241d7a61aea06335bcad2 schema:name nlm_unique_id
85 schema:value 0410462
86 rdf:type schema:PropertyValue
87 Ncb586418d7f941ceace40d44fd5897fb rdf:first Na0e960f8ed4d4e5194aeefb9ed0256a0
88 rdf:rest N20f8e8a48e3d4687b9566e2156332a59
89 Nd5741709d3064763b2b75d4836c53e30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Molecular Sequence Data
91 rdf:type schema:DefinedTerm
92 Ndd5c72a5d44b4162bb2dda0ba781c067 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Kinetics
94 rdf:type schema:DefinedTerm
95 Ndd61f53ee1e940b9a42c9454dca585fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Nucleic Acid Conformation
97 rdf:type schema:DefinedTerm
98 Nfd77febe84ad47ca94bb5f524bc4a6fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Escherichia coli
100 rdf:type schema:DefinedTerm
101 Nfea1426408404bd395971afd3eccce2b schema:volumeNumber 352
102 rdf:type schema:PublicationVolume
103 Nff4cb94a810f433c89fa1de6bb53d9ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Amino Acyl-tRNA Synthetases
105 rdf:type schema:DefinedTerm
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biochemistry and Cell Biology
111 rdf:type schema:DefinedTerm
112 sg:journal.1018957 schema:issn 0090-0028
113 1476-4687
114 schema:name Nature
115 rdf:type schema:Periodical
116 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
117 schema:name Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...