Superconductivity at 33 K in CsxRbyC60 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-07

AUTHORS

K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo, S. Kuroshima

ABSTRACT

THE synthesis of macroscopic quantities1,2 of the fullerenes C60 and C70 has led to discoveries of several unusual properties3–10, in particular the high conductivity3 and superconductivity4–6 of alkali-metal-doped phases. Here we report a superconducting phase of C60 doped with caesium and rubidium, which has the highest transition temperature Tc and the largest diamagnetic shielding found so far for the alkali-metal-doped compounds. CSxRbyC60 (x = 2 and y = 1 in the dopant feed) exhibits a Tc of 33 K and a diamagnetic shielding of over 60%. This is also the highest Tc yet observed in a molecular superconductor. The vari-ation of Tc with dopant, Tc (KxC60) [18 K]< Tc (RbxC60) [∼29 K]< Tc (CsxRbyC60) [33 K], supports the interpretation that the transi-tion temperature of these fullerides is determined mainly by the density of states at the Fermi level. More... »

PAGES

222-223

References to SciGraph publications

Journal

TITLE

Nature

ISSUE

6332

VOLUME

352

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/352222a0

DOI

http://dx.doi.org/10.1038/352222a0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009983899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Tanigaki", 
        "givenName": "K.", 
        "id": "sg:person.01117665562.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117665562.07"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Ebbesen", 
        "givenName": "T. W.", 
        "id": "sg:person.01014615471.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014615471.74"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Saito", 
        "givenName": "S.", 
        "id": "sg:person.014460276631.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460276631.47"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Mizuki", 
        "givenName": "J.", 
        "id": "sg:person.01153223464.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153223464.36"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Tsai", 
        "givenName": "J. S.", 
        "id": "sg:person.01363325061.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363325061.82"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kubo", 
        "givenName": "Y.", 
        "id": "sg:person.011262267014.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262267014.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kuroshima", 
        "givenName": "S.", 
        "id": "sg:person.014404610204.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014404610204.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/350600a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017146843", 
          "https://doi.org/10.1038/350600a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/318162a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024648559", 
          "https://doi.org/10.1038/318162a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350320a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038061462", 
          "https://doi.org/10.1038/350320a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/347354a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050990975", 
          "https://doi.org/10.1038/347354a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100297a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055663355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.252.5009.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062542074"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-07", 
    "datePublishedReg": "1991-07-01", 
    "description": "THE synthesis of macroscopic quantities1,2 of the fullerenes C60 and C70 has led to discoveries of several unusual properties3\u201310, in particular the high conductivity3 and superconductivity4\u20136 of alkali-metal-doped phases. Here we report a superconducting phase of C60 doped with caesium and rubidium, which has the highest transition temperature Tc and the largest diamagnetic shielding found so far for the alkali-metal-doped compounds. CSxRbyC60 (x = 2 and y = 1 in the dopant feed) exhibits a Tc of 33 K and a diamagnetic shielding of over 60%. This is also the highest Tc yet observed in a molecular superconductor. The vari-ation of Tc with dopant, Tc (KxC60) [18 K]< Tc (RbxC60) [\u223c29 K]< Tc (CsxRbyC60) [33 K], supports the interpretation that the transi-tion temperature of these fullerides is determined mainly by the density of states at the Fermi level.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/352222a0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6332", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "352"
      }
    ], 
    "name": "Superconductivity at 33 K in CsxRbyC60", 
    "pagination": "222-223", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f901a952c4f69ca0bfbec6f814d75bcae56b69753d43e4bf912eb30de15a63f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/352222a0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009983899"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/352222a0", 
      "https://app.dimensions.ai/details/publication/pub.1009983899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/352222a0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/352222a0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/352222a0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/352222a0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/352222a0'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/352222a0 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N355cc22782b1493b868121570b450533
4 schema:citation sg:pub.10.1038/318162a0
5 sg:pub.10.1038/347354a0
6 sg:pub.10.1038/350320a0
7 sg:pub.10.1038/350600a0
8 https://doi.org/10.1021/j100297a002
9 https://doi.org/10.1103/physrevlett.66.2637
10 https://doi.org/10.1103/physrevlett.66.2830
11 https://doi.org/10.1126/science.252.5009.1154
12 schema:datePublished 1991-07
13 schema:datePublishedReg 1991-07-01
14 schema:description THE synthesis of macroscopic quantities1,2 of the fullerenes C60 and C70 has led to discoveries of several unusual properties3–10, in particular the high conductivity3 and superconductivity4–6 of alkali-metal-doped phases. Here we report a superconducting phase of C60 doped with caesium and rubidium, which has the highest transition temperature Tc and the largest diamagnetic shielding found so far for the alkali-metal-doped compounds. CSxRbyC60 (x = 2 and y = 1 in the dopant feed) exhibits a Tc of 33 K and a diamagnetic shielding of over 60%. This is also the highest Tc yet observed in a molecular superconductor. The vari-ation of Tc with dopant, Tc (KxC60) [18 K]< Tc (RbxC60) [∼29 K]< Tc (CsxRbyC60) [33 K], supports the interpretation that the transi-tion temperature of these fullerides is determined mainly by the density of states at the Fermi level.
15 schema:genre non_research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N312b709af22c44fa8030f9e369cafc0b
19 Ne38fdd5f805a467db071bd406d34ab1d
20 sg:journal.1018957
21 schema:name Superconductivity at 33 K in CsxRbyC60
22 schema:pagination 222-223
23 schema:productId N3f1fd0822f624ee1b686949c5e3c0abc
24 N624b8a253c804b7dbcb3ecc6e8381d83
25 N84b6f775f63d43c28cdedd0524fd69e7
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009983899
27 https://doi.org/10.1038/352222a0
28 schema:sdDatePublished 2019-04-10T18:08
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N1b4670213f514ae5b2ea88532685e9df
31 schema:url http://www.nature.com/articles/352222a0
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0207cbc930c2493eabf506c7ec0556df rdf:first sg:person.011262267014.55
36 rdf:rest N9ff7e2ad44e34ac5b86eb513834f40c8
37 N1b4670213f514ae5b2ea88532685e9df schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N2ce6dda29e2645bcb6a6e37c67de9f22 rdf:first sg:person.01363325061.82
40 rdf:rest N0207cbc930c2493eabf506c7ec0556df
41 N312b709af22c44fa8030f9e369cafc0b schema:issueNumber 6332
42 rdf:type schema:PublicationIssue
43 N355cc22782b1493b868121570b450533 rdf:first sg:person.01117665562.07
44 rdf:rest N6f5905a6504d4a64964259085bfaf7c0
45 N38a95ae7aa7d4520842e02407a4aa96f rdf:first sg:person.01153223464.36
46 rdf:rest N2ce6dda29e2645bcb6a6e37c67de9f22
47 N3f1fd0822f624ee1b686949c5e3c0abc schema:name doi
48 schema:value 10.1038/352222a0
49 rdf:type schema:PropertyValue
50 N624b8a253c804b7dbcb3ecc6e8381d83 schema:name readcube_id
51 schema:value 2f901a952c4f69ca0bfbec6f814d75bcae56b69753d43e4bf912eb30de15a63f
52 rdf:type schema:PropertyValue
53 N6f5905a6504d4a64964259085bfaf7c0 rdf:first sg:person.01014615471.74
54 rdf:rest Nf70c4b36fd294c84a50aa99e890e5c95
55 N84b6f775f63d43c28cdedd0524fd69e7 schema:name dimensions_id
56 schema:value pub.1009983899
57 rdf:type schema:PropertyValue
58 N9ff7e2ad44e34ac5b86eb513834f40c8 rdf:first sg:person.014404610204.58
59 rdf:rest rdf:nil
60 Ne38fdd5f805a467db071bd406d34ab1d schema:volumeNumber 352
61 rdf:type schema:PublicationVolume
62 Nf70c4b36fd294c84a50aa99e890e5c95 rdf:first sg:person.014460276631.47
63 rdf:rest N38a95ae7aa7d4520842e02407a4aa96f
64 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
65 schema:name Chemical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
68 schema:name Inorganic Chemistry
69 rdf:type schema:DefinedTerm
70 sg:journal.1018957 schema:issn 0090-0028
71 1476-4687
72 schema:name Nature
73 rdf:type schema:Periodical
74 sg:person.01014615471.74 schema:familyName Ebbesen
75 schema:givenName T. W.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014615471.74
77 rdf:type schema:Person
78 sg:person.01117665562.07 schema:familyName Tanigaki
79 schema:givenName K.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117665562.07
81 rdf:type schema:Person
82 sg:person.011262267014.55 schema:familyName Kubo
83 schema:givenName Y.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262267014.55
85 rdf:type schema:Person
86 sg:person.01153223464.36 schema:familyName Mizuki
87 schema:givenName J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153223464.36
89 rdf:type schema:Person
90 sg:person.01363325061.82 schema:familyName Tsai
91 schema:givenName J. S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363325061.82
93 rdf:type schema:Person
94 sg:person.014404610204.58 schema:familyName Kuroshima
95 schema:givenName S.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014404610204.58
97 rdf:type schema:Person
98 sg:person.014460276631.47 schema:familyName Saito
99 schema:givenName S.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460276631.47
101 rdf:type schema:Person
102 sg:pub.10.1038/318162a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024648559
103 https://doi.org/10.1038/318162a0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/347354a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990975
106 https://doi.org/10.1038/347354a0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/350320a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038061462
109 https://doi.org/10.1038/350320a0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/350600a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017146843
112 https://doi.org/10.1038/350600a0
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/j100297a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055663355
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.66.2637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802526
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.66.2830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802585
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1126/science.252.5009.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062542074
121 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...